A particle of mass m is confined between 0<=x<=l. If px be the momentum, then find px in the ground state
"\\psi(x)=\\sqrt\\frac{{2}}{L}sin\\frac{n\\pi x}{L}\\\\n=1 \\\\grounstate \\\\\\psi(x)=\\sqrt\\frac{{2}}{L}sin\\frac{\\pi x}{L}"
"<p_x>=\\frac{\\smallint_{0}^{L}\\psi^* p_x \\psi dx}{\\smallint_{0}^L\\psi\\psi^* dx}"
"<p_x>=\\frac{{\\smallint_{0}^{L}}\\sqrt\\frac{2}{L}sin\\frac{\\pi x}{L}\\frac{d}{dx}(\\sqrt\\frac{2}{L}sin\\frac{\\pi x}{L})dx}{\\smallint_{0}^{L}(\\sqrt\\frac{2}{L}sin\\frac{\\pi x}{L}\\sqrt\\frac{{2}}{L}sin\\frac{\\pi x}{L})dx}"
"<p_x>=\\smallint_{0}^{L}\\frac{2\\pi}{L^2}sin\\frac{\\pi x}{L}cos\\frac{\\pi x}{L}dx"
Where
"\\smallint_{0}^{L}\\sqrt\\frac{{2}}{L}sin\\frac{\\pi x}{L}\\sqrt\\frac{{2}}{L}sin\\frac{\\pi x}{L}dx=1"
"<p_x>=\\smallint_{0}^{L}\\frac{\\pi}{L^2}sin\\frac{2\\pi x}{L}"
"<p_x>=\\frac{\\pi}{L^2}\\smallint_{0}^{L}sin\\frac{2\\pi x}{L}"
"<p_x>=\\frac{\\pi}{L^2}(\\frac{L}{2\\pi})|(\\frac{cos2\\pi x}{L})|_{0}^{L}"
"<p_x>=\\frac{\\pi}{L^2}(\\frac{L}{2\\pi})(cos0-cos{2\\pi})"
"<p_x>=\\frac{\\pi}{L^2}\\times\\frac{L}{2\\pi}(1-1)=0"
"<p_x>=0"
Comments
Leave a comment