ψ(x)=L2sinLnπxn=1grounstateψ(x)=L2sinLπx
<px>=∫0Lψψ∗dx∫0Lψ∗pxψdx
<px>=∫0L(L2sinLπxL2sinLπx)dx∫0LL2sinLπxdxd(L2sinLπx)dx
<px>=∫0LL22πsinLπxcosLπxdx
Where
∫0LL2sinLπxL2sinLπxdx=1
<px>=∫0LL2πsinL2πx
<px>=L2π∫0LsinL2πx
<px>=L2π(2πL)∣(Lcos2πx)∣0L
<px>=L2π(2πL)(cos0−cos2π)
<px>=L2π×2πL(1−1)=0
<px>=0
Comments