Derive schrodingers equation
We know that wave equation
"\\psi(x,t)=Ae^{i(kx-wt)}"
Hamilton equation
H=T+V
Now
"E=\\frac{p^2}{2m}+V(x)"
Take first derivative of a function
"\\frac{d^2\\psi(x,t)}{dt^2}=-k^2Ae^{(kx-wt)}=-k^2\\psi(x,t)"
"\\frac{d^2\\psi(x,t)}{dt^2}=\\frac{-p^2}{\\hbar^2}\\psi(x,t)"
"P=\\hbar k\\\\k=\\frac{2\\pi}{\\lambda}"
"E=\\hbar w"
"E\\psi(x,t)=-\\frac{\\hbar w}{iw}\\psi(x,t)"
"i\\hbar\\frac{d\\psi}{dt}=-\\frac{\\hbar^2}{2m}\\frac{d^2}{dx^2}\\psi(x,t)+V(x)\\psi(x,t)"
Comments
Leave a comment