A simple pendulum is found to vibrate 50 times within 200 s. When 1.5 m of its length is reduced to a certain length, it vibrates 50 times in 175 s. Find the original length of the pendulum.
Given:
"N_1=50,\\; t_1=200\\: \\rm s"
"N_2=50,\\; t_2=175\\: \\rm s"
"l_1=l"
"l_2=l-1.5"
The period of oscillation of a simple pendulum is given by
"T=\\frac{t}{N}=2\\pi\\sqrt{l\/g}"Hence
"\\frac{t_1}{N_1}=2\\pi\\sqrt{l\/g}""\\frac{t_2}{N_2}=2\\pi\\sqrt{(l-1.5)\/g}"
We get
"(t_1\/t_2)^2=l\/(l-1.5)""64\/49=l\/(l-1.5)"
"l=6.4\\:\\rm m"
Comments
Leave a comment