A long straight wire of radius R carries a steady current I. The current is uniformly distributed over its cross section. The magnetic field at a distance 2a/3 from its centre is
We know that
"\\oint B.dl=\\mu_0i"
"B\\oint dl=\\mu_0i=B.(2\\pi a)=\\mu_0i"
"B=\\frac{\\mu_0i}{2\\pi a}"
Magnetic field at centre of wire
"B=\\frac{\\mu_0i}{2\\pi a}"
When
"r=\\frac{2a}{3}"
"\\oint B'.dl=\\mu_0i_{en}"
"i_{en}=i\\frac{\\pi \\times( \\frac{2a}{3})^2}{\\pi a^2}=\\frac{4}{9}i"
"B'(2\\pi\\times\\frac{2a}{3})=\\mu_0\\frac{4i}{9}"
"B'=\\frac{\\mu_0 I}{3 \\pi a}"
"\\frac{B'}{B}=\\frac{2}{3}"
"B'=\\frac{2}{3}B"
Comments
Leave a comment