Answer to Question #212980 in Electricity and Magnetism for Anita

Question #212980

A charge Q is uniformly distributed throughout a sphere of radius a. Taking the potential at infinity as zero, the potential at r = b < a is


1
Expert's answer
2021-07-05T16:07:57-0400

Gauss law

E.A=Qϵ0\smallint E.A=\frac{Q}{\epsilon_0}

r=b<ar=b<a

E.(4πb2)=ρ43πb3ϵ0E.(4\pi b^2)=\frac{\rho\frac{4}{3}\pi b^3}{\epsilon_0}

Where

ρ=Q43πa3\rho=\frac{Q}{\frac{4}{3}\pi a^3}

Ein=qb4πϵ0a3E_{in}=\frac{qb}{4\pi\epsilon_0a^3}

b>a

Eo.A=qϵ0,Eo=q4πϵ0b3E_{o}.A=\frac{q}{\epsilon_0},E_{o}=\frac{q}{4\pi \epsilon _0b^3}

Potential

VaVinfinite=infaE.drV_a-V_{infinite}=\smallint_{inf}^{a}E.dr

Va=infaE.drV_a=-\smallint_{inf}^{a}E.dr

Va=[infbEo.dr+baEin.dr]V_a=-[\smallint _{inf}^bE_o.dr+\int_b^aE_{in}.dr]

Va=[infbkQr2.dr+bakQrR3.dr]V_a=-[\smallint _{inf}^b\frac{kQ}{r^2}.dr+\int_b^a\frac{kQr}{R^3}.dr]

Vin=kQ(3a2b2)2a3V_{in}=\frac{kQ(3a^2-b^2)}{2a^3}

b=a

Vin=3Q8πϵ0aV_{in}=\frac{3Q}{8\pi \epsilon_0a}

V=Vin(r=a)Vin(r=0)∆V=V_{in}{(r=a)}-V_{in}{(r=0)}

V=Q8πϵ0a∆V=\frac{-Q}{8\pi\epsilon_0 a}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment