Gauss law
∫E.A=ϵ0Q
r=b<a
E.(4πb2)=ϵ0ρ34πb3
Where
ρ=34πa3Q
Ein=4πϵ0a3qb
b>a
Eo.A=ϵ0q,Eo=4πϵ0b3q
Potential
Va−Vinfinite=∫infaE.dr
Va=−∫infaE.dr
Va=−[∫infbEo.dr+∫baEin.dr]
Va=−[∫infbr2kQ.dr+∫baR3kQr.dr]
Vin=2a3kQ(3a2−b2)
b=a
Vin=8πϵ0a3Q
∆V=Vin(r=a)−Vin(r=0)
∆V=8πϵ0a−Q
Comments
Leave a comment