A charge Q is uniformly distributed throughout a sphere of radius a. Taking the potential at infinity as zero, the potential at r = b < a is
Gauss law
"\\smallint E.A=\\frac{Q}{\\epsilon_0}"
"r=b<a"
"E.(4\\pi b^2)=\\frac{\\rho\\frac{4}{3}\\pi b^3}{\\epsilon_0}"
Where
"\\rho=\\frac{Q}{\\frac{4}{3}\\pi a^3}"
"E_{in}=\\frac{qb}{4\\pi\\epsilon_0a^3}"
b>a
"E_{o}.A=\\frac{q}{\\epsilon_0},E_{o}=\\frac{q}{4\\pi \\epsilon _0b^3}"
Potential
"V_a-V_{infinite}=\\smallint_{inf}^{a}E.dr"
"V_a=-\\smallint_{inf}^{a}E.dr"
"V_a=-[\\smallint _{inf}^bE_o.dr+\\int_b^aE_{in}.dr]"
"V_a=-[\\smallint _{inf}^b\\frac{kQ}{r^2}.dr+\\int_b^a\\frac{kQr}{R^3}.dr]"
"V_{in}=\\frac{kQ(3a^2-b^2)}{2a^3}"
b=a
"V_{in}=\\frac{3Q}{8\\pi \\epsilon_0a}"
"\u2206V=V_{in}{(r=a)}-V_{in}{(r=0)}"
"\u2206V=\\frac{-Q}{8\\pi\\epsilon_0 a}"
Comments
Leave a comment