Two concentric conducting spheres are filled with an insulating material of uniform charge density ρ0. The inner sphere has radius ra and is held at a potential φ0. The outer sphere has a radius rb and is grounded. (a) Determine the potential and field everywhere in space. (b) What is the capacitance of this object?
Given,
charged density of the insulating material "=\\rho_o"
The radius of inner sphere "=r_a"
Potential "=\\phi_o"
Radius of outer sphere "=(r_b)"
"V_{in}= \\frac{dq}{4\\pi \\epsilon_o r_a}"
Net potential difference, if outer surface was not grounded
"dq = \\rho_o4\\pi r_a^2 dr"
"V= \\int_{r_a}^{r_b}\\frac{4\\pi r^2\\times \\rho_o}{4\\pi \\epsilon_o r}dr"
"\\Rightarrow V = \\int_{r_a}^{r_b}\\frac{\\rho_o}{\\epsilon_o}rdr"
"\\Rightarrow V =\\frac{\\rho_o}{2\\epsilon_o}(r_b^2-r_a^2)"
Capacitance "(c)=\\frac{Q}{V}"
net charge"(dq)=\\rho_o 4\\pi r^2 dr"
Now,integrating both side,
"\\int_0^Q dq=\\int_{ra}^{r_b}\\rho_o 4\\pi r^2 dr"
"Q=\\dfrac{4\\pi \\rho_o}{3}(r_b^3-r_a^3)"
Hence the required capacitance
"C=\\frac{\\dfrac{4\\pi \\rho_o}{3}(r_b^3-r_a^3)}{\\dfrac{\\rho_o}{2\\epsilon_o}(r_b^2-r_a^2)}"
"\\Rightarrow C= \\dfrac{8\\pi \\epsilon_o}{3}\\dfrac{(r_b-r_a)(r_b^2+r_a^2+r_a r_b)}{(r_b-r_a)(r_b+r_a)}"
"\\Rightarrow C = \\dfrac{8 \\pi \\epsilon_o(r_b^2+r_a^2+r_a r_b)}{(r_b+r_a)}"
Comments
Leave a comment