Question #174834

 Two concentric conducting spheres are filled with an insulating material of uniform charge density ρ0. The inner sphere has radius ra and is held at a potential φ0. The outer sphere has a radius rb and is grounded. (a) Determine the potential and field everywhere in space. (b) What is the capacitance of this object?


1
Expert's answer
2021-03-24T20:03:58-0400

Given,

charged density of the insulating material =ρo=\rho_o

The radius of inner sphere =ra=r_a

Potential =ϕo=\phi_o

Radius of outer sphere =(rb)=(r_b)

Vin=dq4πϵoraV_{in}= \frac{dq}{4\pi \epsilon_o r_a}

Net potential difference, if outer surface was not grounded

dq=ρo4πra2drdq = \rho_o4\pi r_a^2 dr


V=rarb4πr2×ρo4πϵordrV= \int_{r_a}^{r_b}\frac{4\pi r^2\times \rho_o}{4\pi \epsilon_o r}dr


V=rarbρoϵordr\Rightarrow V = \int_{r_a}^{r_b}\frac{\rho_o}{\epsilon_o}rdr


V=ρo2ϵo(rb2ra2)\Rightarrow V =\frac{\rho_o}{2\epsilon_o}(r_b^2-r_a^2)

Capacitance (c)=QV(c)=\frac{Q}{V}

net charge(dq)=ρo4πr2dr(dq)=\rho_o 4\pi r^2 dr

Now,integrating both side,

0Qdq=rarbρo4πr2dr\int_0^Q dq=\int_{ra}^{r_b}\rho_o 4\pi r^2 dr


Q=4πρo3(rb3ra3)Q=\dfrac{4\pi \rho_o}{3}(r_b^3-r_a^3)

Hence the required capacitance


C=4πρo3(rb3ra3)ρo2ϵo(rb2ra2)C=\frac{\dfrac{4\pi \rho_o}{3}(r_b^3-r_a^3)}{\dfrac{\rho_o}{2\epsilon_o}(r_b^2-r_a^2)}


C=8πϵo3(rbra)(rb2+ra2+rarb)(rbra)(rb+ra)\Rightarrow C= \dfrac{8\pi \epsilon_o}{3}\dfrac{(r_b-r_a)(r_b^2+r_a^2+r_a r_b)}{(r_b-r_a)(r_b+r_a)}


C=8πϵo(rb2+ra2+rarb)(rb+ra)\Rightarrow C = \dfrac{8 \pi \epsilon_o(r_b^2+r_a^2+r_a r_b)}{(r_b+r_a)}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS