I'm a second year physics undergraduate, and currently learning using Vanderlinde's Classical Electromagnetics Theory. One of the books question I found is:
2-12 Show that the quadrupole term of the multipole expansion of the potential can be written
"V_{3}=\\frac{1}{8\\pi\\varepsilon_{0}}\\sum q_i\\vec{r}^{\\left(i\\right)}\\cdot \\vec{\\nabla }\\left[\\vec{r}^{\\left(i\\right)}\\cdot \\vec{\\nabla }\\left(\\frac{1}{r}\\right)\\right]"
How should I solve this? Where do I start?
We can start by defining multipole expansion. It is a mathematical series representing a function that depends on angles. it is usually two angles on a sphere. These series are useful because they can often be truncated, meaning that only the first few terms need to be retained for a good approximation to the original function.
Proof: The scalar potential "V(\\vec{r})" at a point "\\vec{r}" due to a system of changes is given by
"V(\\vec{r})=\\frac{1}{4 \\pi \\epsilon_o}\\int_{v'} \\frac{\\rho \\vec{r' dV'}}{ |\\vec{r}-\\vec{r'}|}"
We assume that the point is at a large distance from the charge distribution. If "{V'}" varies over the charge distribution, then "r>>r'"
Since, "V(\\vec{r})=\\frac{1}{4 \\pi \\epsilon_o}\\int_{v'} \\frac{\\rho \\vec{r' dV'}}{ |\\vec{r}-\\vec{r'}|}"
Then "{ |\\vec{r}-\\vec{r}'|}=[r^2-2\\vec{r}\\vec{r}'+r^2]^{0.5}=[1-\\frac{2\\hat{v}\\vec{r}'}{r}+(\\frac{r'}{r})^2]^{0.5}"
Where "\\hat{v}\\equiv\\frac{\\vec{r}'}{r}"
Then using the fact that r is much larger than r', we can write
"\\frac{1}{{ |\\vec{r}-\\vec{r}'|}}=\\frac{1}{r}\\frac{1}{[1-\\frac{2\\hat{v}\\vec{r}'}{r}+(\\frac{r'}{r})^2]^{0.5}}"
and using the binomial expansion
"\\frac{1}{[1-\\frac{2\\hat{v}\\vec{r}'}{r}+(\\frac{r'}{r})^2]^{0.5}}=1+\\frac{\\hat{r}-\\vec{r}}{r}+ \\frac{1}{2r^2}(3(\\hat{r} .\\vec{r}-r'^2)+0(\\frac{\\vec{r}'}{r})^3"
We neglect the third spherical term. Hence, the above potential can be written
"V(\\vec{r})=\\frac{1}{4 \\pi\\epsilon_o r}\\int_{v'} \\rho (\\hat{r}) [1+\\frac{\\hat{r}-\\vec{r}}{r}+ \\frac{1}{2r^2}(3(\\hat{r} .\\vec{r}-r'^2)+0(\\frac{\\vec{r}'}{r})^3] dV'"
We write it as "V(v)=V_{mon}(v)+V_{dip}(v)+V_{quad}(v)+..."
"V_{mon}(\\vec{r})=\\frac{1}{4 \\pi\\epsilon_o r}\\int_{v'} \\rho (\\hat{r}) dV'"
"V_{dip}(\\vec{r})=\\frac{1}{4 \\pi\\epsilon_o r^2}\\int_{v'} \\rho (\\hat{r}) [(\\hat{r} -r')] dV'"
"V_{quad}(\\vec{r})=\\frac{1}{8 \\pi\\epsilon_o r^3}\\int_{v'} \\rho (\\hat{r})[(3(\\hat{r}-r'^2)-r'^2] dV'"
Now writing "\\rho(r')" in terms of discrete charge distribition
"\\rho (r')=\\frac{Total \\space change}{Total \\space volume}=\\frac{\\sum dq_i}{\\sum dv_i}"
and using the properties of integration of divergence
"\\int_V \\vec{\\bigtriangledown}.\\frac{\\vec{r}}{r^3}dV=\\int_s \\frac{\\vec{r}}{r^3}ds=\\frac{1}{r^2}\\int_s ds=4 \\pi"
"\\vec{\\bigtriangledown}.\\frac{\\vec{r}}{r^3}=\\vec{\\bigtriangledown}. {\\triangledown}\\frac{\\vec{-1}}{r}=- {\\triangledown}^2\\frac{\\vec{1}}{r}=4 \\pi \\delta (r) \\implies \\delta( \\vec{r})= \\frac{-1}{4 \\pi}{r}{\\triangledown}^2 \\frac{1}{r}"
We can rewrite the quadrupole term as
"V_3= \\frac{1}{8 \\pi\\epsilon_o}\\sum q_i \\vec{r}^{(i)}\\vec{\\bigtriangledown}[\\vec{r}^{(i)}\\vec{\\bigtriangledown} \\frac{1}{r}]"
Comments
Leave a comment