Electric-magnetic phenomena can be represented by the Maxwell's equations.
J ( t ) + ∂ ∂ t ( D ( t ) ) J(t)+\frac{\partial \:}{\partial \:t}\left(D(t\right)) J ( t ) + ∂ t ∂ ( D ( t ) )
Solution to Maxwell's equations in simple medium
E x = A e − k z + B e + k z E_x = A e^{−kz}+B e^{+kz} E x = A e − k z + B e + k z
H y = k i ω μ 0 ( A e − k z + B e + k z ) H_y = \frac{k}{iω \mu_0}(A e^{−kz}+B e^{+kz}) H y = iω μ 0 k ( A e − k z + B e + k z )
The homogenous in 1 D
E x = A e − k z E_x = A e^{−kz} E x = A e − k z
k = i ω μ 0 / ρ k =\sqrt{ iω \mu_0/\rho} k = iω μ 0 / ρ
H y = k i ω μ 0 ( A e − k z ) H_y = \frac{k}{iω \mu_0}(A e^{−kz}) H y = iω μ 0 k ( A e − k z )
At E x ( z = 0 ) = A ⟹ E x ( z = δ ) = A / e E_x (z=0)= A \implies E_x(z=\delta) = A/ e E x ( z = 0 ) = A ⟹ E x ( z = δ ) = A / e
Therefore, penetrating depth of magnetotelluric signals, δ = 2 ρ i ω μ 0 \delta =\sqrt{ \frac{2 \rho}{iω \mu_0}} δ = iω μ 0 2 ρ
Where ω = 2 π f ω= 2 \pi f ω = 2 π f
Comments
Thank you sooooooooooo much.