A sphere of charge Q and radius R has an electric field πΈ(π) = π4πΈπππ₯/π 4 for r β€ R. (a) Find the charge density of the sphere as a function of r. (b) Find the potential function in all space for this object. Give your answers in terms of Q, R, and r.
Given,
"\ud835\udc38(\ud835\udc5f) = \ud835\udc5f^4\\dfrac{\ud835\udc38_{\ud835\udc5a\ud835\udc4e\ud835\udc65}}{\ud835\udc45^4}"
As per the Gauss rule,
"\\oint E.ds=\\dfrac{q_{in}}{\\epsilon_o}"
"\\Rightarrow E\\oint ds=\\dfrac{q_{in}}{\\epsilon}"
"\\Rightarrow E (4\\pi r^2)=\\dfrac{q_{in}}{\\epsilon}"
"\\Rightarrow E = \\dfrac{q_{in}}{4\\pi \\epsilon_o r^2}"
if r=R,
"E_{max}=\\dfrac{Q}{4\\pi \\epsilon_o R^2}"
As per the Gauss rule,
"\\oint E(r).ds=\\dfrac{q_{in}}{\\epsilon_o}"
"\\Rightarrow \ud835\udc5f^4\\dfrac{\ud835\udc38_{\ud835\udc5a\ud835\udc4e\ud835\udc65}}{\ud835\udc45^4}. 4\\pi r^2=\\dfrac{q_{in}}{\\epsilon_o}"
"\\Rightarrow \\dfrac{Q}{4\\pi \\epsilon_o R^2}\\dfrac{4\\pi r^6}{R^4}=\\frac{q_{in}}{\\epsilon_o}"
"\\Rightarrow \\dfrac{Qr^6}{R^6}={q_{in}}"
We know that "dq=\\rho dV"
we know that "dV=4\\pi r^2 dr"
"\\int dq=\\int\\rho(r)4\\pi r^2 dr =q_{in}"
"\\Rightarrow \\int\\rho(r)4\\pi r^2 dr =q_{in}"
"\\Rightarrow \\int\\rho(r) r^2 dr =\\dfrac{Q r^6}{4\\pi R^6}"
Now, taking the differentiation,
"\\Rightarrow \\frac{d}{dr}(\\int\\rho(r) r^2 dr) =\\dfrac{Q }{4\\pi R^6}\\frac{d(r^6)}{dr}"
"\\Rightarrow {\\rho(r) r^2}=\\dfrac{6Qr^5}{4\\pi R^6}"
"\\Rightarrow \\rho(r)=\\dfrac{3 Qr^3}{2\\pi R^6}"
For potential function,
"\\int dV= \\int \\dfrac{{dq}}{4\\pi \\epsilon_o r}"
"dq=\\rho(r)(4\\pi r^2)dr"
"\\Rightarrow V = \\frac{}{}" "\\int \\dfrac{\\rho(r)(4\\pi r^2)dr}{4\\pi \\epsilon_o r}=\\int\\dfrac{3 Qr^3}{\\epsilon_o2\\pi R^6}( r)dr"
"\\Rightarrow V = \\dfrac{3Q}{2\\pi \\epsilon_o R^6}\\int(r^3)dr"
"V=\\dfrac{3Qr^4}{8\\pi \\epsilon_oR^6}"
Comments
Leave a comment