Answer to Question #235489 in Electric Circuits for Ahmad

Question #235489
A charge of 1μC is situated at the origin of the xy plane. A 3μC charge is placed at (1,2), a -4μC charge is placed at (-3,-5) and a -5μC charge is placed at (2,-4). Determine the force felt by the 1μC due to the presence of the other charges.
1
Expert's answer
2021-09-13T11:01:58-0400

To analyze the system we have to identify the charges:


q1=+1μC=1×106Cq2=+3μC=3×106Cq3=4μC=4×106Cq4=5μC=5×106Cq_1=+1\, \mu C=1\times10^{-6}\,C \\ q_2=+3\, \mu C=3\times10^{-6}\,C \\ q_3=-4\, \mu C=-4\times10^{-6}\,C \\ q_4=-5\, \mu C=-5\times10^{-6}\,C


We also proceed to define the direction and unit vectors:


r1/2=r1r2=(0,0)(1,2)r1/2=(1,2)r1/2^=(1,2)12+22=(15,25)r1/3=r1r3=(0,0)(3,5)r1/3=(3,5)r1/3^=(3,5)32+52=(334,534)r1/4=r1r3=(0,0)(2,4)r1/4=(2,4)r1/4^=(2,4)22+42=(15,25)r_{1/2}=r_{1}-r_{2}=(0,0)-(1,2) \\ r_{1/2}=(-1,-2) \\ \widehat{r_{1/2}}=\dfrac{(-1,-2)}{\sqrt{1^2+2^2}}=(-\frac{1}{\sqrt{5}},-\frac{2}{\sqrt{5}}) \\ r_{1/3}=r_{1}-r_{3}=(0,0)-(-3,-5) \\ r_{1/3} =(3,5) \\ \widehat{r_{1/3}}=\dfrac{(3,5)}{\sqrt{3^2+5^2}}=(\frac{3}{\sqrt{34}},\frac{5}{\sqrt{34}}) \\ r_{1/4}=r_{1}-r_{3}=(0,0)-(2,-4) \\ r_{1/4}=(-2,4) \\ \widehat{r_{1/4}}=\dfrac{(-2,4)}{\sqrt{2^2+4^2}}=(-\frac{1}{\sqrt{5}},\frac{2}{\sqrt{5}})


After that we proceed to use Coulomb's law (F=kqiqjrij2rij^F=k\cfrac{q_iq_j}{r^2_{ij}}\,\widehat{r_{ij}} ) for each of the pairs (between charges q1 and q2, charges q1 and q3, and charges q1 and q4) and then we can find the total force felt by q1:


FT=F1/2+F1/3+F1/4FT=kq1(q2r1/22r1/2^+q3r1/32r1/3^+q4r1/42r1/4^)FT=(9×109Nm2C2)(106C)((3×106C)(12+22)m2(15,25)+......+(4×106C)(32+52)m2(334,534)+(5×106C)(22+42)m2(15,25))F_T=F_{1/2}+F_{1/3}+F_{1/4} \\ F_T=kq_1 \Big( \dfrac{q_2}{r^2_{1/2}} \, \widehat{r_{1/2}} +\dfrac{q_3}{r^2_{1/3}} \, \widehat{r_{1/3}}+\dfrac{q_4}{r^2_{1/4}} \, \widehat{r_{1/4}} \Big) \\ F_T=(9\times10^9\frac{Nm^2}{C^2})(10^{-6}\,C) \Bigg( \dfrac{(3\times10^{-6}\,C)}{(1^2+2^2)\,m^2}(-\frac{1}{\sqrt{5}},-\frac{2}{\sqrt{5}}) +... \\...+\dfrac{(-4\times10^{-6}\,C)}{(3^2+5^2)\,m^2} (\frac{3}{\sqrt{34}},\frac{5}{\sqrt{34}})+\dfrac{(-5\times10^{-6}\,C)}{(2^2+4^2)\,m^2}(-\frac{1}{\sqrt{5}},\frac{2}{\sqrt{5}}) \Bigg)


We proceed with the substitution to confirm the vector that describes the force felt by q1:


FT=(9×103N)((35)(15,25)+......+(217)(334,534)+(14)(15,25))FT=(9×103N)((355,655)+......+(61734,101734)+(145,125))FT=(9mN)(35561734+145,......,655101734125)FT(9×103N)(0.217,0.861)FT(1.953,7.750)×103N\\ F_T=(9\times10^{-3}\,N) \Big( (\frac{3}{5}) (-\frac{1}{\sqrt{5}},-\frac{2}{\sqrt{5}})+... \\...+(-\frac{2}{17})(\frac{3}{\sqrt{34}},\frac{5}{\sqrt{34}})+(-\frac{1}{4})(-\frac{1}{\sqrt{5}},\frac{2}{\sqrt{5}}) \Big) \\ F_T=(9\times10^{-3}\,N) \Big( (-\frac{3}{5\sqrt{5}},-\frac{6}{5\sqrt{5}})+... \\...+(-\frac{6}{17\sqrt{34}},-\frac{10}{17\sqrt{34}})+(\frac{1}{4\sqrt{5}},-\frac{1}{2\sqrt{5}}) \Big) \\F_T= (9\,mN) \Big( -\frac{3}{5\sqrt{5}}-\frac{6}{17\sqrt{34}}+\frac{1}{4\sqrt{5}}\,,... \\...\,, -\frac{6}{5\sqrt{5}} -\frac{10}{17\sqrt{34}} -\frac{1}{2\sqrt{5}} \Big) \\ F_T \approx (9\times10^{-3}\,N) \Big( -0.217,-0.861 \Big) \\ F_T \approxeq \Big( -1.953,-7.750 \Big)\times10^{-3}\,N


After we find the force vector, we proceed to calculate its magnitude:


FT=((1.953×103N)2+(7.750×103N)2))FT=7.992×103N\\ F_T = \sqrt{ \Big( (-1.953\times10^{-3}N)^2+(-7.750\times10^{-3}N)^2) \Big)} \\F_T=7.992\times10^{-3}\,N


In conclusion, the force felt by the 1μC due to the presence of the other charges is approximately 7.992 X 10-3 N or 7.992 mN (miliNewtons).
Reference:

  • Sears, F. W., & Zemansky, M. W. (1973). University physics.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment