To analyze the system we have to identify the charges:
q 1 = + 1 μ C = 1 × 1 0 − 6 C q 2 = + 3 μ C = 3 × 1 0 − 6 C q 3 = − 4 μ C = − 4 × 1 0 − 6 C q 4 = − 5 μ C = − 5 × 1 0 − 6 C q_1=+1\, \mu C=1\times10^{-6}\,C
\\ q_2=+3\, \mu C=3\times10^{-6}\,C
\\ q_3=-4\, \mu C=-4\times10^{-6}\,C
\\ q_4=-5\, \mu C=-5\times10^{-6}\,C q 1 = + 1 μ C = 1 × 1 0 − 6 C q 2 = + 3 μ C = 3 × 1 0 − 6 C q 3 = − 4 μ C = − 4 × 1 0 − 6 C q 4 = − 5 μ C = − 5 × 1 0 − 6 C
We also proceed to define the direction and unit vectors:
r 1 / 2 = r 1 − r 2 = ( 0 , 0 ) − ( 1 , 2 ) r 1 / 2 = ( − 1 , − 2 ) r 1 / 2 ^ = ( − 1 , − 2 ) 1 2 + 2 2 = ( − 1 5 , − 2 5 ) r 1 / 3 = r 1 − r 3 = ( 0 , 0 ) − ( − 3 , − 5 ) r 1 / 3 = ( 3 , 5 ) r 1 / 3 ^ = ( 3 , 5 ) 3 2 + 5 2 = ( 3 34 , 5 34 ) r 1 / 4 = r 1 − r 3 = ( 0 , 0 ) − ( 2 , − 4 ) r 1 / 4 = ( − 2 , 4 ) r 1 / 4 ^ = ( − 2 , 4 ) 2 2 + 4 2 = ( − 1 5 , 2 5 ) r_{1/2}=r_{1}-r_{2}=(0,0)-(1,2)
\\ r_{1/2}=(-1,-2)
\\ \widehat{r_{1/2}}=\dfrac{(-1,-2)}{\sqrt{1^2+2^2}}=(-\frac{1}{\sqrt{5}},-\frac{2}{\sqrt{5}})
\\ r_{1/3}=r_{1}-r_{3}=(0,0)-(-3,-5)
\\ r_{1/3} =(3,5)
\\ \widehat{r_{1/3}}=\dfrac{(3,5)}{\sqrt{3^2+5^2}}=(\frac{3}{\sqrt{34}},\frac{5}{\sqrt{34}})
\\ r_{1/4}=r_{1}-r_{3}=(0,0)-(2,-4)
\\ r_{1/4}=(-2,4)
\\ \widehat{r_{1/4}}=\dfrac{(-2,4)}{\sqrt{2^2+4^2}}=(-\frac{1}{\sqrt{5}},\frac{2}{\sqrt{5}}) r 1/2 = r 1 − r 2 = ( 0 , 0 ) − ( 1 , 2 ) r 1/2 = ( − 1 , − 2 ) r 1/2 = 1 2 + 2 2 ( − 1 , − 2 ) = ( − 5 1 , − 5 2 ) r 1/3 = r 1 − r 3 = ( 0 , 0 ) − ( − 3 , − 5 ) r 1/3 = ( 3 , 5 ) r 1/3 = 3 2 + 5 2 ( 3 , 5 ) = ( 34 3 , 34 5 ) r 1/4 = r 1 − r 3 = ( 0 , 0 ) − ( 2 , − 4 ) r 1/4 = ( − 2 , 4 ) r 1/4 = 2 2 + 4 2 ( − 2 , 4 ) = ( − 5 1 , 5 2 )
After that we proceed to use Coulomb's law (F = k q i q j r i j 2 r i j ^ F=k\cfrac{q_iq_j}{r^2_{ij}}\,\widehat{r_{ij}} F = k r ij 2 q i q j r ij ) for each of the pairs (between charges q1 and q2 , charges q1 and q3 , and charges q1 and q4 ) and then we can find the total force felt by q1 :
F T = F 1 / 2 + F 1 / 3 + F 1 / 4 F T = k q 1 ( q 2 r 1 / 2 2 r 1 / 2 ^ + q 3 r 1 / 3 2 r 1 / 3 ^ + q 4 r 1 / 4 2 r 1 / 4 ^ ) F T = ( 9 × 1 0 9 N m 2 C 2 ) ( 1 0 − 6 C ) ( ( 3 × 1 0 − 6 C ) ( 1 2 + 2 2 ) m 2 ( − 1 5 , − 2 5 ) + . . . . . . + ( − 4 × 1 0 − 6 C ) ( 3 2 + 5 2 ) m 2 ( 3 34 , 5 34 ) + ( − 5 × 1 0 − 6 C ) ( 2 2 + 4 2 ) m 2 ( − 1 5 , 2 5 ) ) F_T=F_{1/2}+F_{1/3}+F_{1/4}
\\ F_T=kq_1 \Big( \dfrac{q_2}{r^2_{1/2}} \, \widehat{r_{1/2}} +\dfrac{q_3}{r^2_{1/3}} \, \widehat{r_{1/3}}+\dfrac{q_4}{r^2_{1/4}} \, \widehat{r_{1/4}} \Big)
\\ F_T=(9\times10^9\frac{Nm^2}{C^2})(10^{-6}\,C) \Bigg( \dfrac{(3\times10^{-6}\,C)}{(1^2+2^2)\,m^2}(-\frac{1}{\sqrt{5}},-\frac{2}{\sqrt{5}}) +...
\\...+\dfrac{(-4\times10^{-6}\,C)}{(3^2+5^2)\,m^2} (\frac{3}{\sqrt{34}},\frac{5}{\sqrt{34}})+\dfrac{(-5\times10^{-6}\,C)}{(2^2+4^2)\,m^2}(-\frac{1}{\sqrt{5}},\frac{2}{\sqrt{5}}) \Bigg) F T = F 1/2 + F 1/3 + F 1/4 F T = k q 1 ( r 1/2 2 q 2 r 1/2 + r 1/3 2 q 3 r 1/3 + r 1/4 2 q 4 r 1/4 ) F T = ( 9 × 1 0 9 C 2 N m 2 ) ( 1 0 − 6 C ) ( ( 1 2 + 2 2 ) m 2 ( 3 × 1 0 − 6 C ) ( − 5 1 , − 5 2 ) + ... ... + ( 3 2 + 5 2 ) m 2 ( − 4 × 1 0 − 6 C ) ( 34 3 , 34 5 ) + ( 2 2 + 4 2 ) m 2 ( − 5 × 1 0 − 6 C ) ( − 5 1 , 5 2 ) )
We proceed with the substitution to confirm the vector that describes the force felt by q1 :
F T = ( 9 × 1 0 − 3 N ) ( ( 3 5 ) ( − 1 5 , − 2 5 ) + . . . . . . + ( − 2 17 ) ( 3 34 , 5 34 ) + ( − 1 4 ) ( − 1 5 , 2 5 ) ) F T = ( 9 × 1 0 − 3 N ) ( ( − 3 5 5 , − 6 5 5 ) + . . . . . . + ( − 6 17 34 , − 10 17 34 ) + ( 1 4 5 , − 1 2 5 ) ) F T = ( 9 m N ) ( − 3 5 5 − 6 17 34 + 1 4 5 , . . . . . . , − 6 5 5 − 10 17 34 − 1 2 5 ) F T ≈ ( 9 × 1 0 − 3 N ) ( − 0.217 , − 0.861 ) F T ≊ ( − 1.953 , − 7.750 ) × 1 0 − 3 N \\ F_T=(9\times10^{-3}\,N) \Big( (\frac{3}{5}) (-\frac{1}{\sqrt{5}},-\frac{2}{\sqrt{5}})+...
\\...+(-\frac{2}{17})(\frac{3}{\sqrt{34}},\frac{5}{\sqrt{34}})+(-\frac{1}{4})(-\frac{1}{\sqrt{5}},\frac{2}{\sqrt{5}}) \Big)
\\ F_T=(9\times10^{-3}\,N) \Big( (-\frac{3}{5\sqrt{5}},-\frac{6}{5\sqrt{5}})+...
\\...+(-\frac{6}{17\sqrt{34}},-\frac{10}{17\sqrt{34}})+(\frac{1}{4\sqrt{5}},-\frac{1}{2\sqrt{5}}) \Big)
\\F_T= (9\,mN) \Big( -\frac{3}{5\sqrt{5}}-\frac{6}{17\sqrt{34}}+\frac{1}{4\sqrt{5}}\,,...
\\...\,, -\frac{6}{5\sqrt{5}} -\frac{10}{17\sqrt{34}} -\frac{1}{2\sqrt{5}} \Big)
\\ F_T \approx (9\times10^{-3}\,N) \Big( -0.217,-0.861 \Big)
\\ F_T \approxeq \Big( -1.953,-7.750 \Big)\times10^{-3}\,N F T = ( 9 × 1 0 − 3 N ) ( ( 5 3 ) ( − 5 1 , − 5 2 ) + ... ... + ( − 17 2 ) ( 34 3 , 34 5 ) + ( − 4 1 ) ( − 5 1 , 5 2 ) ) F T = ( 9 × 1 0 − 3 N ) ( ( − 5 5 3 , − 5 5 6 ) + ... ... + ( − 17 34 6 , − 17 34 10 ) + ( 4 5 1 , − 2 5 1 ) ) F T = ( 9 m N ) ( − 5 5 3 − 17 34 6 + 4 5 1 , ... ... , − 5 5 6 − 17 34 10 − 2 5 1 ) F T ≈ ( 9 × 1 0 − 3 N ) ( − 0.217 , − 0.861 ) F T ≊ ( − 1.953 , − 7.750 ) × 1 0 − 3 N
After we find the force vector, we proceed to calculate its magnitude:
F T = ( ( − 1.953 × 1 0 − 3 N ) 2 + ( − 7.750 × 1 0 − 3 N ) 2 ) ) F T = 7.992 × 1 0 − 3 N \\ F_T = \sqrt{ \Big( (-1.953\times10^{-3}N)^2+(-7.750\times10^{-3}N)^2) \Big)}
\\F_T=7.992\times10^{-3}\,N F T = ( ( − 1.953 × 1 0 − 3 N ) 2 + ( − 7.750 × 1 0 − 3 N ) 2 ) ) F T = 7.992 × 1 0 − 3 N
Sears, F. W., & Zemansky, M. W. (1973). University physics.
Comments
Leave a comment