First we confirm how many electrons were removed:
N = 50 billion million electrons N = ( 50 ) ( 1 0 9 ) ( 1 0 6 ) electrons N = 5 × 1 0 16 electrons N=\text{50 billion million electrons}
\\N=(50)(10^9)(10^6)\text{ electrons}
\\N=5\times10^{16}\text{ electrons} N = 50 billion million electrons N = ( 50 ) ( 1 0 9 ) ( 1 0 6 ) electrons N = 5 × 1 0 16 electrons
Since we are removing electrons (because this is a deficit), the total charge will be positive:
Q = 5 × 1 0 16 electrons × 1.609 × 1 0 − 19 C 1 e l e c t r o n Q = 8.045 × 1 0 − 3 C = 8.045 m C Q=5\times10^{16}\,\cancel {\text{electrons}}\times\dfrac{1.609\times10^{-19}\,C}{1\,\cancel {electron}}
\\ \text{ }
\\Q=8.045\times10^{-3}\,C=8.045\,mC Q = 5 × 1 0 16 electrons × 1 e l ec t ro n 1.609 × 1 0 − 19 C Q = 8.045 × 1 0 − 3 C = 8.045 m C
In conclusion, 50 billion million deficit of electrons will have a charge of 8.045 X 10 -3 C or 8.045 mC .
Reference:
Sears, F. W., & Zemansky, M. W. (1973). University physics.
Comments