The sum of two discontinuous function is always discontinuous function. True or false with full explanation
ANSWER . The statement is false.
EXPLANATION
The sum of two discontinuous functions can be a continuous function (example 1), can be a discontinuous function (example 2)
Example 1
"h(x) = \\begin{cases}1\n & \\text{ if } -2\\leq x\\leq 0 \\\\ -1\n & \\text{ if } \\, \\, \\, \\, \\, \\, \\, 0< x\\leq 2\n\\end{cases}\\\\g(x) = \\begin{cases}x^{3}-1\n & \\text{ if } -2\\leq x\\leq 0 \\\\ x^{3}+1\n & \\text{ if } \\, \\, \\, \\, \\, \\, \\, 0< x\\leq 2\n\\end{cases}"
These function are discontinuous at "x=0" .
"f(x)=h(x)+g(x)=x^{3}, x\\in[-2,2]" is continuous .
Example 2
"h(x) = \\begin{cases}0\n & \\text{ if } -2\\leq x\\leq 0 \\\\ -1\n & \\text{ if } \\, \\, \\, \\, \\, \\, \\, 0< x\\leq 2\n\\end{cases}\\\\g(x) = \\begin{cases}x^{3}-1\n & \\text{ if } -2\\leq x\\leq 0 \\\\ x^{3}+1\n & \\text{ if } \\, \\, \\, \\, \\, \\, \\, 0< x\\leq 2\n\\end{cases}"
These function are discontinuous at "x=0" .
"f(x) =h(x)+g(x)= \\begin{cases}x^{3}-1\n & \\text{ if } -2\\leq x\\leq 0 \\\\ x^{3} \n & \\text{ if } \\, \\, \\, \\, \\, \\, \\, 0< x\\leq 2\n\\end{cases}"
This function is discontinuous at x=0
Comments
Leave a comment