Every continuous function is differentiable.
True or false with full explanation.
False.
Counterexample
The function "f(x)=|x|" is continuous on "(-\\infin, \\infin)."
"\\lim\\limits_{\\Delta x\\to0^{+}}\\dfrac{f(0+\\Delta x)-f(0)}{\\Delta x}=\\lim\\limits_{\\Delta x\\to0^{+}}\\dfrac{\\Delta-0}{\\Delta x}=1"
"\\lim\\limits_{\\Delta x\\to0^{-}}\\dfrac{f(0+\\Delta x)-f(0)}{\\Delta x}=-1"
"\\not=1=\\lim\\limits_{\\Delta x\\to0^{+}}\\dfrac{f(0+\\Delta x)-f(0)}{\\Delta x}"
Therefore
does not exist.
Therefore the function "f(x)=|x|" is not differentiable at "x=0."
Comments
Leave a comment