Check whether the sequence (an), where
an = 1/ (n+1) + 1/(n+2) +....+1/(2n) is convergent or not
Consider
"=(1+\\dfrac{1}{2}+...+\\dfrac{1}{n})+(\\dfrac{1}{n+1}+...+\\dfrac{1}{2n})"
Then
"+\\dfrac{1}{n+1}+...+\\dfrac{1}{2n-1}+\\dfrac{1}{2n})-2(\\dfrac{1}{2}+\\dfrac{1}{4}+...+\\dfrac{1}{2n})"
"=1-\\dfrac{1}{2}+\\dfrac{1}{3}-\\dfrac{1}{4}+...+\\dfrac{1}{2n-1}-\\dfrac{1}{2n}"
"=\\displaystyle\\sum_{k=1}^{2n}\\dfrac{(-1)^{k+1}}{k}"
Consider "\\ln(1+x)" for "x\\in(-1, x]"
Then for "x=1"
"=\\displaystyle\\sum_{k=1}^{\\infin}\\dfrac{(-1)^{k+1}}{k}"
We see that
"=\\lim\\limits_{n\\to\\infin}\\displaystyle\\sum_{k=1}^{2n}\\dfrac{(-1)^{k+1}}{k}=\\displaystyle\\sum_{k=1}^{\\infin}\\dfrac{(-1)^{k+1}}{k}=\\ln2"
Therefore he sequence "(a_n)" is convergent.
Comments
Leave a comment