Answer to Question #346385 in Real Analysis for Mr Alex

Question #346385

find limn(1(2n+1)2+2(2n+2)23(2n+3)2)+...+325n\lim _{n\to \infty }\left(\frac{1}{\left(2n+1\right)^2}+\frac{2}{\left(2n+2\right)^2}\frac{3}{\left(2n+3\right)^2}\right)+...+\frac{3}{25n}


1
Expert's answer
2022-06-06T09:54:56-0400

ANSWER: [ln53ln23+2522]=ln52+2510.3163\left [ \ln \frac{5}{3}-\ln \frac{2}{3} +\frac{2}{5}-\frac{2}{2}\right ]=\ln \frac{5}{2}+\frac{2}{5}-1\cong0.3163

EXPLANATION

Let

akn=3k2(2n+1)2+3k1(2n+2)2+3k(2n+3)2  (k=1,...,n,nN)a_{k}^{n}=\frac{3k-2}{\left (2n+1 \right )^{2}}+\frac{3k-1}{\left (2n+2 \right )^{2}}+\frac{3k }{\left (2n+3 \right )^{2}} \, \, (k=1,...,n, n\in\N) .

Then a1n=1(2n+1)2+2(2n+2)2+3(2n+3)2a_{1}^{n}=\frac{1}{\left (2n+1 \right )^{2}}+\frac{2}{\left (2n+2 \right )^{2}}+\frac{3 }{\left (2n+3 \right )^{2}} , ann=3n2(2n+3n2)2+3n1(2n+3n1)2+3n(2n+3n)2=3n2(5n2)2+3n1(5n1)2+3n(5n)2a_{n}^{n}=\frac{3n-2}{\left (2n+3n-2 \right )^{2}}+\frac{3n-1}{\left (2n+3n-1 \right )^{2}}+\frac{3 n }{\left (2n+3n \right )^{2}} =\frac{3n-2}{\left (5n -2 \right )^{2}}+\frac{3n-1}{\left (5n-1 \right )^{2}}+\frac{3 n }{\left (5n \right )^{2}} and

Sn=k=1nakn=k=13nk(2n+k)2=k=13nk9n2(23+k3n)2=13nk=13nk3n(23+k3n)2S_{n}= \sum_{k=1}^{n}a_{k}^{n}=\sum_{k=1}^{3n}\frac{k}{\left ( 2n+k \right )^{2}} = \sum_{k=1}^{3n}\frac{k}{9n^{2}\left ( \frac{2}{3}+\frac{k}{3n} \right )^{2}}=\frac{1}{3n} \sum_{k=1}^{3n}\frac{\frac{k}{3n}}{\left ( \frac{2}{3}+\frac{k}{3n} \right )^{2}} .

SnS{n} is the Riemann sum on the segment [0,1][0,1] , corresponding to the partition Pn={0,13n,23n,...,3n3n=1}P_{n}=\left \{ 0,\frac{1}{3n } ,\frac{2}{3n},...,\frac{3n}{3n}=1\right \} for the function f(x)=x(23+x)2f(x)=\frac{x}{\left ( \frac{2}{3} +x\right )^{2} } .

The Riemann sum is σ(Pn,f,)=k=13n(xk1xk)f(xk)\sigma\left ( P_{n},f, \right )=\sum_{k=1}^{3n}\left ( x_{k-1}-x_{k} \right )f(x_{k}) , where xk=k3nx_{k}=\frac{k}{3n} .

Since the function ff is continuous on [0,1][0,1] then ff is integrable and

limnSn=limnσ(Pn,f,)=01x(23+x)2dx\lim_{n\rightarrow\infty}S_{n}=\lim_{n\rightarrow\infty}\sigma\left ( P_{n},f, \right )=\int_{0}^{1}\frac{x}{\left ( \frac{2}{3} +x\right )^{2} }dx ==

=01[1(23+x)231(23+x)2]dx=[ln(23+x)+231(23+x)]01==[ln53ln23+2522]=ln52+2510.3163=\int_{0}^{1}\left [\frac{1}{\left ( \frac{2}{3} +x\right ) } -\frac{2}{3}\cdot\frac{1}{\left ( \frac{2}{3} +x\right )^{2}} \right ]dx=\left [ \ln\left ( \frac{2}{3}+x \right )+\frac{2}{3}\cdot \frac{1}{ \left ( \frac{2}{3}+x \right )} \right ]_{0}^{1}= \\=\left [ \ln \frac{5}{3}-\ln \frac{2}{3} +\frac{2}{5}-\frac{2}{2}\right ]=\ln \frac{5}{2}+\frac{2}{5}-1\cong0.3163



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment