ANSWER: [ln35−ln32+52−22]=ln25+52−1≅0.3163
EXPLANATION
Let
akn=(2n+1)23k−2+(2n+2)23k−1+(2n+3)23k(k=1,...,n,n∈N) .
Then a1n=(2n+1)21+(2n+2)22+(2n+3)23 , ann=(2n+3n−2)23n−2+(2n+3n−1)23n−1+(2n+3n)23n=(5n−2)23n−2+(5n−1)23n−1+(5n)23n and
Sn=∑k=1nakn=∑k=13n(2n+k)2k=∑k=13n9n2(32+3nk)2k=3n1∑k=13n(32+3nk)23nk .
Sn is the Riemann sum on the segment [0,1] , corresponding to the partition Pn={0,3n1,3n2,...,3n3n=1} for the function f(x)=(32+x)2x .
The Riemann sum is σ(Pn,f,)=∑k=13n(xk−1−xk)f(xk) , where xk=3nk .
Since the function f is continuous on [0,1] then f is integrable and
limn→∞Sn=limn→∞σ(Pn,f,)=∫01(32+x)2xdx =
=∫01[(32+x)1−32⋅(32+x)21]dx=[ln(32+x)+32⋅(32+x)1]01==[ln35−ln32+52−22]=ln25+52−1≅0.3163
Comments
Leave a comment