Check whether the series {Summation} n2x5/(n4+x3) , x belongs to [0, a] is uniformly convergent or not ,where a belongs to R
ANSWER . The series "\\sum_{n=1}^{\\infty}\\frac{n^{2}x^{5}}{n^{4}+x^{3}}" converges uniformly on "[0,a]" .
EXPLANATION.
Since "a>0" , then for all "x\\in [0,a] , n\\geq 1" the inequality
"0\\leq \\frac{n^{2}x^{5}}{n^{4}+x^{3}}\\leq \\frac{n^{2}a^{5}}{n^{4} }=\\frac {a^{5} }{n^{2}}"
is true. The series "\\sum_{n=1}^{\\infty}\\frac{ a^{5}}{n^{2} }=a^{5}\\cdot \\sum_{n=1}^{\\infty}\\frac{ 1}{n^{2} }" converges, because the series "\\sum_{n=1}^{\\infty}\\frac{ 1}{n^{2} }" converges ( p-series with p=2). So, by the Weierstrass M test the series "\\sum_{n=1}^{\\infty}\\frac{n^{2}x^{5}}{n^{4}+x^{3}}" converges uniformly on "[0,a]" .
Comments
Leave a comment