a)
lim x → 0 tan x sec 2 x − x x 3 = lim x → 0 tan x ( 1 ) 2 − x x 3 \lim\limits_{x\to 0}\dfrac{\tan x\sec^2 x-x}{x^3}=\lim\limits_{x\to 0}\dfrac{\tan x(1)^2-x}{x^3} x → 0 lim x 3 tan x sec 2 x − x = x → 0 lim x 3 tan x ( 1 ) 2 − x
= lim x → 0 x + x 3 3 + 2 x 5 15 + . . . − x x 3 =\lim\limits_{x\to 0}\dfrac{x+\dfrac{x^3}{3}+\dfrac{2x^5}{15}+...-x}{x^3} = x → 0 lim x 3 x + 3 x 3 + 15 2 x 5 + ... − x
= lim x → 0 x 3 3 + 2 x 5 15 + . . . x 3 =\lim\limits_{x\to 0}\dfrac{\dfrac{x^3}{3}+\dfrac{2x^5}{15}+...}{x^3} = x → 0 lim x 3 3 x 3 + 15 2 x 5 + ...
= lim x → 0 ( 1 3 + 2 x 2 15 + . . . ) = 1 3 =\lim\limits_{x\to 0}(\dfrac{1}{3}+\dfrac{2x^2}{15}+...)=\dfrac{1}{3} = x → 0 lim ( 3 1 + 15 2 x 2 + ... ) = 3 1
b)
f ( x ) = x 3 − 11 x + 9 f(x)=x^3-11x+9 f ( x ) = x 3 − 11 x + 9 is continuous on [ 0 , 1 ] . [0, 1]. [ 0 , 1 ] .
f ( 0 ) = ( 0 ) 3 − 11 ( 0 ) + 9 = 9 > 0 f(0)=(0)^3-11(0)+9=9>0 f ( 0 ) = ( 0 ) 3 − 11 ( 0 ) + 9 = 9 > 0
f ( 1 ) = ( 1 ) 3 − 11 ( 1 ) + 9 = − 1 < 0 f(1)=(1)^3-11(1)+9=-1<0 f ( 1 ) = ( 1 ) 3 − 11 ( 1 ) + 9 = − 1 < 0 Then by the Intermediate Value Theorem there exists a number c c c in ( 0 , 1 ) (0, 1) ( 0 , 1 ) such that f ( c ) = 0. f(c)=0. f ( c ) = 0.
Therefore the equation, x 3 − 11 x + 9 = 0 x^3- 11x +9 =0 x 3 − 11 x + 9 = 0 has a real root in the interval [ 0 , 1 ] [0,1] [ 0 , 1 ] by the Intermediate Value Theorem.
c)
(i)
∑ i = 1 ∞ 3 n − 1 7 n \displaystyle\sum_{i=1}^{\infin}\dfrac{3n-1}{7^n} i = 1 ∑ ∞ 7 n 3 n − 1 Use the Ratio Test
∣ a n + 1 a n ∣ = ∣ 3 ( n + 1 ) − 1 7 n + 1 3 n − 1 7 n ∣ = 1 7 ( 3 n + 2 3 n − 1 ) → 1 7 < 1 |\dfrac{a_{n+1}}{a_n}|=|\dfrac{\dfrac{3(n+1)-1}{7^{n+1}}}{\dfrac{3n-1}{7^n}}|=\dfrac{1}{7}(\dfrac{3n+2}{3n-1})\to\dfrac{1}{7}<1 ∣ a n a n + 1 ∣ = ∣ 7 n 3 n − 1 7 n + 1 3 ( n + 1 ) − 1 ∣ = 7 1 ( 3 n − 1 3 n + 2 ) → 7 1 < 1 Thus, by the Ratio Test, the given series is absolutely convergent and therefore convergent.
(ii)
∑ i = 1 ∞ n 2 + 3 − n 2 − 3 n \displaystyle\sum_{i=1}^{\infin}\dfrac{\sqrt{n^2+3}-\sqrt{n^2-3}}{\sqrt{n}} i = 1 ∑ ∞ n n 2 + 3 − n 2 − 3
= ∑ i = 1 ∞ n 2 + 3 − ( n 2 − 3 ) n ( n 2 + 3 + n 2 − 3 ) =\displaystyle\sum_{i=1}^{\infin}\dfrac{n^2+3-(n^2-3)}{\sqrt{n}(\sqrt{n^2+3}+\sqrt{n^2-3})} = i = 1 ∑ ∞ n ( n 2 + 3 + n 2 − 3 ) n 2 + 3 − ( n 2 − 3 )
= ∑ i = 1 ∞ 6 n ( n 2 + 3 + n 2 − 3 ) =\displaystyle\sum_{i=1}^{\infin}\dfrac{6}{\sqrt{n}(\sqrt{n^2+3}+\sqrt{n^2-3})} = i = 1 ∑ ∞ n ( n 2 + 3 + n 2 − 3 ) 6 Use the Limit Comparison Test
Take a n = 6 n ( n 2 + 3 + n 2 − 3 ) , b n = 1 n a_n=\dfrac{6}{\sqrt{n}(\sqrt{n^2+3}+\sqrt{n^2-3})}, b_n=\dfrac{1}{n} a n = n ( n 2 + 3 + n 2 − 3 ) 6 , b n = n 1
lim n → ∞ a n b n = lim n → ∞ 6 n ( n 2 + 3 + n 2 − 3 ) 1 n \lim\limits_{n\to \infin}\dfrac{a_n}{b_n}=\lim\limits_{n\to \infin}\dfrac{\dfrac{6}{\sqrt{n}(\sqrt{n^2+3}+\sqrt{n^2-3})}}{\dfrac{1}{n}} n → ∞ lim b n a n = n → ∞ lim n 1 n ( n 2 + 3 + n 2 − 3 ) 6
= lim n → ∞ 6 1 + 3 / n 2 + 1 − 3 / n 2 = 3 =\lim\limits_{n\to \infin}\dfrac{6}{\sqrt{1+3/n^2}+\sqrt{1-3/n^2}}=3 = n → ∞ lim 1 + 3/ n 2 + 1 − 3/ n 2 6 = 3 The harmonic series ∑ i = 1 ∞ 1 n \displaystyle\sum_{i=1}^{\infin}\dfrac{1}{n} i = 1 ∑ ∞ n 1 is divergent.
Therefore the series ∑ i = 1 ∞ n 2 + 3 − n 2 − 3 n \displaystyle\sum_{i=1}^{\infin}\dfrac{\sqrt{n^2+3}-\sqrt{n^2-3}}{\sqrt{n}} i = 1 ∑ ∞ n n 2 + 3 − n 2 − 3 is divergent by the Limit Comparison Test.
Comments