Test whether the series ∞Σn=0 1/(n^5+x^3) converges uniformly or not
Solution
For the given series
"\\sum_{0}^{\\infty }\\frac{1}{n^5+x^3}"
We use the Ratio Test for the Radius of convergence
Convergence when "L < 1"
"L=\\lim_{n\\rightarrow \\infty }\\left | \\frac{a_{n+1}}{a_{n}} \\right |"
Here, "a_{n}=\\frac{1}{n^5+x^3}" , then
"a_{n+1}=\\frac{1}{(n+1)^5+x^3}"
Therefore,
"L=\\lim_{n\\rightarrow \\infty }\\left | \\frac{\\frac{1}{(n+1)^5+x^3}}{\\frac{1}{n^5+x^3}}\\right |"
"L=\\lim_{n\\rightarrow \\infty }\\left | \\frac{n^5+x^3}{(1+n)^5+x^3}\\right |"
"L = \\mathop {\\lim }\\limits_{n \\to \\infty } \\left| {\\frac{{{n^5}\\left( {1 + \\frac{{{x^3}}}{{{n^5}}}} \\right)}}{{{n^5}{{\\left( {\\frac{1}{n} + 1} \\right)}^5} + {x^3}}}} \\right|\\"
"L = \\mathop {\\lim }\\limits_{n \\to \\infty } \\left| {\\frac{{{n^5}\\left( {1 + \\frac{{{x^3}}}{{{n^5}}}} \\right)}}{{{n^5}\\left( {{{\\left( {\\frac{1}{n} + 1} \\right)}^5} + \\frac{{{x^3}}}{{{n^5}}}} \\right)}}} \\right|\\"
"L = \\left| {\\frac{{\\left( {1 + \\frac{{{x^3}}}{{{\\infty ^5}}}} \\right)}}{{\\left( {{{\\left( {\\frac{1}{\\infty } + 1} \\right)}^5} + \\frac{{{x^3}}}{{{\\infty ^5}}}} \\right)}}} \\right|\\"
"L = \\left| {\\frac{{\\left( {1 + 0} \\right)}}{{\\left( {{{\\left( {0 + 1} \\right)}^5} + 0} \\right)}}} \\right|\\"
"L=1"
Hence the series may be divergent, conditionally convergent, or absolutely convergent.
Now, when
"\\sum\\limits_0^\\infty {\\left| {{a_n}} \\right|} \\" converges, then "\\sum\\limits_0^\\infty {{a_n}} \\" converges.
Therefore, the series is convergent for "x>-1"
Comments
Leave a comment