Prove that the sequence {an/n} is convergent where { an} is a bounded sequence
Given that "\\left\\{a_{n}\\right\\}" is a bounded sequence.
"\\Rightarrow \\quad\\left|a_{n}\\right| \\leqslant M" for all "n \\in \\mathbb{N}" , for some "M \\in \\mathbb{R}^{+}"
"\\Rightarrow\\left|\\frac{a_{n}}{n}\\right| \\leqslant \\frac{m}{n}"
But the sequence "\\frac{m}{n}" converges to 0 .
"\\left.\\begin{array}{rl}\n\n\\therefore & \\lim _{n \\rightarrow \\infty}\\left|\\frac{a_{n}}{n}\\right| \\leqslant \\lim _{n \\rightarrow \\infty} \\frac{m}{n}=0 \\\\\n\n\\Rightarrow & \\lim _{n \\rightarrow \\infty}\\left|\\frac{a_{n}}{n}\\right|=0 \\quad\\left[\\because\\left|\\frac{a_{n}}{n}\\right| \\text { is a non negative sequence }\\right] \\\\\n\n\\Rightarrow & \\lim _{n \\rightarrow \\infty} \\frac{a_{n}}{n}=0 \\quad\\left[\\because-\\left|\\frac{a_{n}}{n}\\right| \\leqslant \\frac{a_{n}}{n} \\leqslant\\left|\\frac{a_{n}}{n}\\right|\\right. \\text{By sandwich theorem}] \\\\\n\n\n\n\\end{array}\\right]"
Hence, proved.
Comments
Leave a comment