The function f: R→R defined by f(x)= | x-1|+ | 3-x| is differentiable at x= 4.
True or false with full explanation
The given function is "f(x)=|x-1|+|3-x|,\\ x\\in\\R."
But, the derivative of a sum is the sum of derivatives so;
"\\displaystyle\n\\frac{d}{dx} \\left(\\left|{x - 3}\\right| + \\left|{x - 1}\\right|\\right) = \\frac{d}{dx} \\left(\\left|{x - 3}\\right|\\right) + \\frac{d}{dx} \\left(\\left|{x - 1}\\right|\\right)"
The function "\\displaystyle\n\\left|{x - 3}\\right|" is the composition "\\displaystyle\nf{\\left(g{\\left(x \\right)} \\right)}" of two functions "\\displaystyle\nf{\\left(u \\right)} = \\left|{u}\\right|" and
"\\displaystyle\ng{\\left(x \\right)} = x - 3".
Also, The function "\\displaystyle\n\\left|{x - 1}\\right|" is the composition "\\displaystyle\nh{\\left(k{\\left(x \\right)} \\right)}" of two functions "\\displaystyle\nh{\\left(v \\right)} = \\left|{v}\\right|" and
"\\displaystyle\nk{\\left(x \\right)} = x - 1"
Now, apply the chain rule which is "\\displaystyle\n\\frac{d}{dx} \\left(f{\\left(g{\\left(x \\right)} \\right)}\\right) = \\frac{d}{du} \\left(f{\\left(u \\right)}\\right) \\frac{d}{dx} \\left(g{\\left(x \\right)}\\right)" and
"\\displaystyle\n\\frac{d}{dx} \\left(h{\\left(k{\\left(x \\right)} \\right)}\\right) = \\frac{d}{du} \\left(h{\\left(v \\right)}\\right) \\frac{d}{dx} \\left(k{\\left(x \\right)}\\right)".
Where "\\displaystyle\n\\frac{d}{du} \\left(\\left|{u}\\right|\\right) = \\frac{u}{\\left|{u}\\right|}\\text{ and }\n\\frac{d}{dv} \\left(\\left|{v}\\right|\\right) = \\frac{v}{\\left|{v}\\right|}"
We have;
"\\displaystyle\n\\frac{d}{dx} \\left(\\left|{x - 3}\\right|\\right) + \\frac{d}{dx} \\left(\\left|{x - 1}\\right|\\right) = \\frac{d}{du} \\left(\\left|{u}\\right|\\right) \\frac{d}{dx} \\left(x - 3\\right) + \\frac{d}{dv}(|v|)\\frac{d}{dx} \\left({x - 1}\\right)"
"\\displaystyle\n=\\frac{\\left(u\\right) \\frac{d}{dx} \\left(x - 3\\right)}{\\left|u\\right|} + \\frac{\\left(v\\right) \\frac{d}{dx} \\left(x - 1\\right)}{\\left|v\\right|} \\\\"
"\\displaystyle\n=\\frac{\\left(x - 3\\right) \\frac{d}{dx} \\left(x - 3\\right)}{\\left|{x - 3}\\right|} + \\frac{\\left(x - 1\\right) \\frac{d}{dx} \\left(x - 1\\right)}{\\left|{x - 1}\\right|} \\\\"
"\\displaystyle\n = \\frac{\\left(x - 3\\right) }{\\left|{x - 3}\\right|} + \\frac{x - 1}{\\left|{x - 1}\\right|}"
Thus,
"\\displaystyle\n\\frac{d}{dx} \\left(\\left|{x - 3}\\right| + \\left|{x - 1}\\right|\\right) = \\frac{x - 3}{\\left|{x - 3}\\right|} + \\frac{x - 1}{\\left|{x - 1}\\right|}"
Hence, the given function is differentiable at "\\displaystyle x=4" and
"\\displaystyle\n\\frac{d}{dx} \\left(\\left|{x - 3}\\right| + \\left|{x - 1}\\right|\\right)|_{\\left(x = 4\\right)} = 2"
Comments
Leave a comment