Examine the following series for convergence
∞Σn=1 [(n-1/(2n+3)]^n
Let "a_n=(\\dfrac{n-1}{2n+3})^n"
Now, consider "L=\\lim_{n\\rightarrow \\infty} {a_n}^{1\/n}"
"\\Rightarrow L=\\lim_{n\\rightarrow \\infty} [{(\\dfrac{n-1}{2n+3})^n}]^{1\/n}\n\\\\ \\Rightarrow L=\\lim_{n\\rightarrow \\infty} (\\dfrac{n-1}{2n+3})\n\\\\ \\Rightarrow L=\\lim_{n\\rightarrow \\infty} (\\dfrac{1-\\frac1n}{2+\\frac3n})\n\\\\ \\Rightarrow L= \\dfrac12"
Since, "L<1", so by root test, "\\Sigma a_n" converges.
Comments
Leave a comment