Sketch the graph of the function, f defined by
f(x)= |x-3| +[x], x∈ [2,4] where [x] denotes the greatest integer function
"f(x)=y\\:=|x-3|\\:+\\left[x\\right], x\u2208 [2,4]"
"\\mathrm{Domain\\:of\\:}\\:y\\::\\quad \\begin{bmatrix}\\mathrm{Solution:}\\:&\\:2\\le \\:x\\le \\:4\\:\\\\ \\:\\mathrm{Interval\\:Notation:}&\\:\\left[2,\\:4\\right]\\end{bmatrix}"
"\\mathrm{Range\\:of\\:}y:\\quad \\begin{bmatrix}\\mathrm{Solution:}\\:&\\:3\\le \\:f\\left(x\\right)\\le \\:5\\:\\\\ \\:\\mathrm{Interval\\:Notation:}&\\:\\left[3,\\:5\\right]\\end{bmatrix}"
"\\\\ \\mathrm{Extreme\\:Points\\:of}\\ y:\\quad \\mathrm{Maximum}\\left(4,\\:5\\right)"
Using this data, its graph is:
Comments
Leave a comment