Find the value of m so that
lim (sin 2x + m sin 3x)/ x^3
x→0
is finite.
"\\begin{aligned}\n&\\operatorname{lim}_{x \\rightarrow 0} \\frac{\\sin 2 x+m \\sin 3x}{x^{3}} \\\\\n&lim_{x \\rightarrow 0} \\frac{[2 \\sin x\\cos x+m(3\\sin x-4\\sin^3x)]}{x^{3}} \\\\\n&lim_{x \\rightarrow 0} \\frac{\\sin x[2 \\cos x+m(3-4\\sin^2x)]}{x^{3}} \\\\\n&lim_{x \\rightarrow 0} \\frac{[2 \\cos x+m(3-4\\sin^2x)]}{x^{2}} \\\\\n&\\{\\because lim_{x \\rightarrow 0} \\frac{\\sin x}{x}=1 \\}\\\\\n\n\\end{aligned}"
As "x \\rightarrow 0" , denominator tends to , so the numerator also tends to 0.
Thus, "lim_{x \\rightarrow 0} \\ [2 \\cos x+m(3-4\\sin^2x)]=0\\\\\n2+3m=0\\\\\nm=\\frac{-2}{3}"
Comments
Leave a comment