Show that int(A ∩ B) = int(A) ∩ int(B).
"\\text{Suppose x $\\in$ int(A $\\cap$ B), then there exists $\\epsilon >0$ such that $N(x,\\epsilon)\\subset A \\implies $ }\\\\\\text{$N(x,\\epsilon) \\subset A$ and $N(x,\\epsilon) \\subset B$, then by definition we have that $x \\in int(A)$ and $x \\in int(B)$}\\\\\n\\implies int(A\\cap B) \\subseteq int(A) \\cap int(B)\\\\\n\\text{Now, suppose $y\\in int(A) \\cap int(B),$ then there exist $\\epsilon$ > 0 such that $N(y,\\epsilon)\\in $ }\\\\\n\\text{$int(A) \\cap int(B)$}\\\\\n\\implies N(y,\\epsilon) \\subset int(A) \\text{ and } N(y,\\epsilon) \\subset int(B)\\\\\n\\implies y \\in A \\text{ and } y \\in B\\\\\n\\implies y \\in A \\cap B\\\\\n\\text{We have that $y\\in int(A)$ and $y\\in int(B)$, then there are $\\epsilon_1, \\epsilon_2 > 0$ such that $N(y,\\epsilon_1)$}\\\\\n\\text{$\\subset A$ and $N(y,\\epsilon_2) \\subset B$}\\\\\n\\text{Let $\\epsilon_0 = \\min\\{\\epsilon_1,\\epsilon_2\\}$, then}\\\\\nN(y,\\epsilon_0) \\subset A \\cap B\\\\\n\\implies y \\in int(A \\cap B)\\\\\n\\implies int(A) \\cap int(B) \\subseteq int(A\\cap B)\\\\\n\\therefore int(A\\cap B) = int(A) \\cap int(B)"
Comments
Leave a comment