Use the Taylor series to find the values of ln 0.4 accurate to 10^-3 . Use the integral remainder.
Solution:
Using Taylor series expansion:
ln(1+x)=x−x22+x33−x44+x55−...\ln(1+x)=x-\dfrac{x^2}{2}+\dfrac{x^3}{3}-\dfrac{x^4}{4}+\dfrac{x^5}{5}-...ln(1+x)=x−2x2+3x3−4x4+5x5−...
Put x=−0.6x=-0.6x=−0.6
ln(1−0.6)=(−0.6)−(−0.6)22+(−0.6)33−(−0.6)44+(−0.6)55−...⇒ln0.4≈−0.6−0.362−0.2163−0.12964−0.077765=−0.899952\ln(1-0.6)=(-0.6)-\dfrac{(-0.6)^2}{2}+\dfrac{(-0.6)^3}{3}-\dfrac{(-0.6)^4}{4}+\dfrac{(-0.6)^5}{5}-... \\ \Rightarrow \ln 0.4\approx-0.6-\dfrac{0.36}{2}-\dfrac{0.216}{3}-\dfrac{0.1296}{4}-\dfrac{0.07776}{5} \\=-0.899952ln(1−0.6)=(−0.6)−2(−0.6)2+3(−0.6)3−4(−0.6)4+5(−0.6)5−...⇒ln0.4≈−0.6−20.36−30.216−40.1296−50.07776=−0.899952
≈−0.900\approx -0.900≈−0.900 [nearest to 10−310^{-3}10−3 or 0.001]
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment