Answer to Question #257023 in Real Analysis for udith

Question #257023

Use the Taylor series to find the values of ln 0.4 accurate to 10^-3 . Use the integral remainder.


1
Expert's answer
2021-10-27T11:03:27-0400

Solution:

Using Taylor series expansion:

ln(1+x)=xx22+x33x44+x55...\ln(1+x)=x-\dfrac{x^2}{2}+\dfrac{x^3}{3}-\dfrac{x^4}{4}+\dfrac{x^5}{5}-...

Put x=0.6x=-0.6

ln(10.6)=(0.6)(0.6)22+(0.6)33(0.6)44+(0.6)55...ln0.40.60.3620.21630.129640.077765=0.899952\ln(1-0.6)=(-0.6)-\dfrac{(-0.6)^2}{2}+\dfrac{(-0.6)^3}{3}-\dfrac{(-0.6)^4}{4}+\dfrac{(-0.6)^5}{5}-... \\ \Rightarrow \ln 0.4\approx-0.6-\dfrac{0.36}{2}-\dfrac{0.216}{3}-\dfrac{0.1296}{4}-\dfrac{0.07776}{5} \\=-0.899952

0.900\approx -0.900 [nearest to 10310^{-3} or 0.001]


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment