Use the Taylor series to find the values of ln 0.4 accurate to 10^-3 . Use the integral remainder.
Solution:
Using Taylor series expansion:
"\\ln(1+x)=x-\\dfrac{x^2}{2}+\\dfrac{x^3}{3}-\\dfrac{x^4}{4}+\\dfrac{x^5}{5}-..."
Put "x=-0.6"
"\\ln(1-0.6)=(-0.6)-\\dfrac{(-0.6)^2}{2}+\\dfrac{(-0.6)^3}{3}-\\dfrac{(-0.6)^4}{4}+\\dfrac{(-0.6)^5}{5}-...\n\\\\ \\Rightarrow \\ln 0.4\\approx-0.6-\\dfrac{0.36}{2}-\\dfrac{0.216}{3}-\\dfrac{0.1296}{4}-\\dfrac{0.07776}{5}\n\\\\=-0.899952"
"\\approx -0.900" [nearest to "10^{-3}" or 0.001]
Comments
Leave a comment