Use the Taylor series to find the values of ln 0.4 accurate to 10-3Β . Use the integral remainder.
We use f(x)=ln(1+x);
Taylor formula:
"f(x)=f(a)+f^{(1)}(a)\\cdot \\frac{(x-a)^1}{1!}+...+f^{(n)}(a)\\cdot \\frac{(x-a)^n}{n!}+\\frac{1}{n!}\\int_a^x(x-t)^n\\cdot f^{(n+1)}(t)dt"
We take a=1,dx=x-a=-0.6
f(a)=ln(1)=0
"f^{(1)}(x)=\\frac{1}{x},f^{(1)}(1)=1;\\\\\nf^{(2)}(x)=-\\frac{1}{x^2},f^{(2)}(1)=-1;\\\\\nf^{(3)}(x)=\\frac{2!}{x^3},f^{(3)}(1)=2!;\\\\\n,,,,,,,,,\\\\\nf^{(n)}(x)=(-1)^{n-1}\\frac{(n-1)!}{x^n}, \\frac{f^{(n)}(1)(0.4-1)^n}{n!}=-\\frac{0.6^n}{n!};\\\\"
"f^{(n+1)}(t)=(-1)^n\\frac{n!}{t^{n+1}}"
"f(x)=-0.6-\\frac{0.6^2}{2}-...-\\frac{0.6^n}{n}+(-1)^{n}\\frac{n!}{n!}\\int_1^{x}\\frac{(0.4-t)^n}{t^{n+1}}dt=\\\\\n-0.6-\\frac{0.6^2}{2}-...-\\frac{0.6^n}{n}+(-1)^{n}\\int_1^{0.4}\\left( \\frac{0.4}{t}-1\\right)^n\\frac{1}{t}dt"
"|(1-\\frac{0.4}{t}|^n\\cdot {1}{|t|}\\le(1-\\frac{0.4}{1})^n\\cdot \\frac{1}{0.4}=0.6^n\\frac{1}{0.4},\\space t\\in(0.4,1)"
"|(-1)^{n}\\int_1^{0.4}\\left( \\frac{0.4}{t}-1\\right)^n\\frac{1}{t}dt|\\le 0.6^n\\cdot |0.4-1|\\cdot \\frac{1}{0.4}=\\frac{0.6^{n+1}}{0.4}<0.001"
"0.6^{14}\/0.4>0.001,\\space 0.6^{15}\/0.4<0.001\\\\\nn=14;\\\\\nln(0.4)=-0.6-\\frac{0.6^2}{2}-\\frac{0.6^3}{3}-\\frac{0.6^4}{4}-\\frac{0.6^5}{5}-\\frac{0.6^6}{8}-\\frac{0.6^7}{7}-\\frac{0.6^8}{8}- \\\\ -\\frac{0.6^9}{9}-\\frac{0.6^{10}}{10}-\\frac{0.6^{11}}{11}-\\frac{0.6^{12}}{12}-\\frac{0.6^{13}}{13}-\\frac{0.6^{14}}{14}-=-0.916"
Comments
Leave a comment