Show using an example π and π are not integrable on [π, π], but ππ may be integrable on [π, π].
Take the two modified Dirichlet function "\\delta_1(x)" and "\\delta_2(x)=\\delta_1(x)", where
"\\delta_1(x)=\\begin{cases} 1,\\ x\\in\\mathbb{R}\\setminus\\mathbb{Q}\\\\ -1,\\ x\\in\\mathbb{Q}\\end{cases}"
By Darboux criteria they are not integrable on "[0,1]" , but "\\delta_1\\delta_2\\equiv 1" is integrable on "[0,1]"
Comments
Leave a comment