Answer to Question #252511 in Real Analysis for dasuuu

Question #252511

lim π‘₯β†’0+ (sin π‘₯) ^x


1
Expert's answer
2021-10-18T15:12:37-0400

"\\lim_{x\\to\\ 0^+} sin^x x= \\lim_{x\\to\\ 0^+} e^{ln(sin^x )}"

Also,

"\\lim_{x\\to\\ 0^+} e^{ln(sin^x x)}= \\lim_{x\\to\\ 0^+} e^{xln(sinx)}"

On rearranging we get:


"\\lim_{x\\to\\ 0^+} e^{xln(sin^x )}= e^{\\lim_{x\\to\\ 0^+} \\cfrac{ln(sinx)}{1\/x}}"


Applying L’ hospital we get :

"e^{\\lim_{x\\to\\ 0^+} \\cfrac{ln(sinx)}{1\/x}}= e^{\\lim_{x\\to\\ 0^+} \\cfrac{-x^2 cosx}{sinx}}"


on further rearranging we get:


"e^{\\lim_{x\\to\\ 0^+} \\cfrac{-x^2 cosx}{sinx}} = e^{\\lim_{x\\to\\ 0^+} \\cfrac{-x\\ cosx}{\\cfrac{sinx}{x}}}"


As ,

"\\lim_{x\\to\\ 0^+} \\cfrac{sinx}{x}=1"

Also

"\\lim_{x\\to\\ 0^+} x\\ cosx =0"


And hence ,


"e^{\\lim_{x\\to\\ 0^+} \\cfrac{-x\\ cosx}{\\cfrac{sinx}{x}}} = e^{0} =1"


hence,


"\\lim_{x\\to\\ 0^+} sin^x x=1"





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS