lim π₯β0+ (sin π₯) ^x
"\\lim_{x\\to\\ 0^+} sin^x x= \\lim_{x\\to\\ 0^+} e^{ln(sin^x )}"
Also,
"\\lim_{x\\to\\ 0^+} e^{ln(sin^x x)}= \\lim_{x\\to\\ 0^+} e^{xln(sinx)}"
On rearranging we get:
"\\lim_{x\\to\\ 0^+} e^{xln(sin^x )}= e^{\\lim_{x\\to\\ 0^+} \\cfrac{ln(sinx)}{1\/x}}"
Applying Lβ hospital we get :
"e^{\\lim_{x\\to\\ 0^+} \\cfrac{ln(sinx)}{1\/x}}= e^{\\lim_{x\\to\\ 0^+} \\cfrac{-x^2 cosx}{sinx}}"
on further rearranging we get:
"e^{\\lim_{x\\to\\ 0^+} \\cfrac{-x^2 cosx}{sinx}} = e^{\\lim_{x\\to\\ 0^+} \\cfrac{-x\\ cosx}{\\cfrac{sinx}{x}}}"
As ,
"\\lim_{x\\to\\ 0^+} \\cfrac{sinx}{x}=1"
Also
"\\lim_{x\\to\\ 0^+} x\\ cosx =0"
And hence ,
"e^{\\lim_{x\\to\\ 0^+} \\cfrac{-x\\ cosx}{\\cfrac{sinx}{x}}} = e^{0} =1"
hence,
"\\lim_{x\\to\\ 0^+} sin^x x=1"
Comments
Leave a comment