f(x) = cos x - sin x
Differentiating with respect to x
f'(x) = - sin x - cos x
f''(x) = - cos x + sin x
For extreme values of f(x) ,
f'(x) = 0
=> - sin x - cos x = 0
=> sin x = - cos x
=> tan x = -1
=> tan x = tan ("-\\frac{\u03c0}{4})"
=> x = nπ "-\\frac{\u03c0}{4}" Where n is an integer
Since x "\\in(-\\frac{\u03c0}{2}, \\frac{\u03c0}{2})" the only value of n is 0.
So x = "-\\frac{\u03c0}{4}"
f''("-\\frac{\u03c0}{4}) = -cos(-\\frac{\u03c0}{4})+sin(-\\frac{\u03c0}{4})"
= "-cos(\\frac{\u03c0}{4})-sin(\\frac{\u03c0}{4})"
= "-\\frac{1}{\\sqrt{2}} -\\frac{1}{\\sqrt{2}}"
= "-\\frac{2}{\\sqrt{2}}"
= "-\\sqrt{2}"
So f''("-\\frac{\u03c0}{4})" is negative.
Therefore f(x) has a maximum value at x = "-\\frac{\u03c0}{4}" and maximum value is "f(-\\frac{\u03c0}{4}) = cos(-\\frac{\u03c0}{4})-sin(-\\frac{\u03c0}{4})"
= "\\frac{1}{\\sqrt{2}} +\\frac{1}{\\sqrt{2}}"
="\\sqrt{2}"
Answer:
Yes , there is a extreme value of f(x) = cos x - sin x at x = "-\\frac{\u03c0}{4}" and it is a maximum value equating "\\sqrt{2}"
Comments
Leave a comment