f(x) = cos x - sin x
Differentiating with respect to x
f'(x) = - sin x - cos x
f''(x) = - cos x + sin x
For extreme values of f(x) ,
f'(x) = 0
=> - sin x - cos x = 0
=> sin x = - cos x
=> tan x = -1
=> tan x = tan (− π 4 ) -\frac{π}{4}) − 4 π )
=> x = nπ − π 4 -\frac{π}{4} − 4 π Where n is an integer
Since x ∈ ( − π 2 , π 2 ) \in(-\frac{π}{2}, \frac{π}{2}) ∈ ( − 2 π , 2 π ) the only value of n is 0.
So x = − π 4 -\frac{π}{4} − 4 π
f''(− π 4 ) = − c o s ( − π 4 ) + s i n ( − π 4 ) -\frac{π}{4}) = -cos(-\frac{π}{4})+sin(-\frac{π}{4}) − 4 π ) = − cos ( − 4 π ) + s in ( − 4 π )
= − c o s ( π 4 ) − s i n ( π 4 ) -cos(\frac{π}{4})-sin(\frac{π}{4}) − cos ( 4 π ) − s in ( 4 π )
= − 1 2 − 1 2 -\frac{1}{\sqrt{2}} -\frac{1}{\sqrt{2}} − 2 1 − 2 1
= − 2 2 -\frac{2}{\sqrt{2}} − 2 2
= − 2 -\sqrt{2} − 2
So f''(− π 4 ) -\frac{π}{4}) − 4 π ) is negative.
Therefore f(x) has a maximum value at x = − π 4 -\frac{π}{4} − 4 π and maximum value is f ( − π 4 ) = c o s ( − π 4 ) − s i n ( − π 4 ) f(-\frac{π}{4}) = cos(-\frac{π}{4})-sin(-\frac{π}{4}) f ( − 4 π ) = cos ( − 4 π ) − s in ( − 4 π )
= 1 2 + 1 2 \frac{1}{\sqrt{2}} +\frac{1}{\sqrt{2}} 2 1 + 2 1
=2 \sqrt{2} 2
Answer:
Yes , there is a extreme value of f(x) = cos x - sin x at x = − π 4 -\frac{π}{4} − 4 π and it is a maximum value equating 2 \sqrt{2} 2
Comments