Solution:
"\\begin{aligned}\n\n&\\lim _{n \\rightarrow \\infty} \\frac{1}{n}\\left[\\sin \\frac{\\pi}{n}+\\sin \\frac{2 \\pi}{n}+\\ldots+\\sin \\frac{(n-1) \\pi}{n}\\right] \\\\\n\n&\\quad=\\lim _{n \\rightarrow \\infty}\\left\\{\\frac{1}{n} \\sum_{r=1}^{n-1} \\sin \\left(\\frac{r \\pi}{n}\\right)\\right\\}= \\int_{0}^{1} \\sin \\pi x d x \\\\\n\n&\\quad=\\left[\\frac{-\\cos \\pi x}{\\pi}\\right]_{0}^{1}\n\n\\end{aligned}"
"=\\dfrac1{\\pi}[-\\cos \\pi+\\cos 0]\n\\\\=\\dfrac1{\\pi}[1+1]\n\\\\=\\dfrac2{\\pi}"
Hence, proved.
Comments
Leave a comment