ANSWER: "S_3,S_4" are NOT a neighborhood of the given point a.
EXPLANATION.
Let "a\\in S" and there exist "\\varepsilon >0" such that "\\left( a-\\varepsilon ,a+\\ \\varepsilon \\right) \\subseteq S" . By the definition, "S" is a neighborhood of the point a.
Hence:
(1) "\\left\\{ 1 \\right\\} \\in (-2,3)={ S }_{ 1 }" . Let "\u03b5=1," "\\left( a-1,a+1 \\right) =(1-1,1+1)=(0,2)\\subset (-2,3)={ S }_{ 1 }\\quad" ."S_1" is a neighborhood of the point a=1.
(2) "\\left\\{ 2 \\right\\} \\in [-3,\\infty)={ S }_{ 2 }" . Let "\u03b5=1," "\\left( a-1,a+1 \\right) =(2-1,2+1)=(1,3)\\subset [-3,\\infty )={ S }_{ 2 }\\quad" ."S_2" is a neighborhood of the point a=2.
(3) "{ \\left\\{ 3 \\right\\} \\in S }_{ 3 }=\\left\\{ x:|x-1|\\le 2 \\right\\} =\\left\\{ x:-2\\le x-1\\ \\le 2 \\right\\} =\\left\\{ x:-1\\le x \\ \\le 3 \\right\\}" .
For all "\\varepsilon >0\\quad \\left( a-\\varepsilon ,a+\\varepsilon \\right) \\ =(3-\\varepsilon ,3+\\varepsilon )\\supset (3\\ ,3+\\varepsilon )\\ \\ , (3\\ ,3+\\varepsilon )\\cap \\ { S }_{ 3 }=\\emptyset" . So, "S_3" is not a neighborhood of the point a=3.
(4) "{ \\left\\{ 1 \\right\\} \\in S }_{ 4 }=\\left\\{ x:|x-3\\ |\\ge 2 \\right\\} =\\left\\{ x:\\ \\ x-3\\le -2\\ \\ \\right\\} \\cup \\left\\{ x:2\\le x-3\\ \\ \\right\\} =\\left\\{ x:\\ \\ x\\quad \\le 1\\ \\ \\right\\} \\cup \\left\\{ x:x\\ge 5\\ \\ \\ \\right\\} ." For all "\\varepsilon >0\\ \\left( a-\\varepsilon ,a+\\varepsilon \\right) \\ =(1-\\varepsilon ,1+\\varepsilon )\\supset (1\\ ,1+\\varepsilon )\\quad" and "(1\\ ,1+\\varepsilon )\\cap \\left( 1,5 \\right)" is not an empty set. Therefore, "(1\\ ,1+\\varepsilon )" is not completely contained in "S_4" . So, "S_4" is not a neighborhood of the point a=1.
Comments
Leave a comment