discuss the continuity/uniform continuity/Lipchitz continuity and differentiability of the functions |x| on [β1,1].
ANSWER.Function "f(x)=|x|" is Lipschitz continuous, therefore, uniformly continuous, hence continuous on [-1,1]. The function is not differentiable at all points of the [-1,1] (At the point x=0 the function is not differentiable).
EXPLANATION.
Function "f(x)=|x|" is Lipschitz continuous, because for all "{ x }_{ 1 },{ x }_{ 2 }\\in \\left[ -1,1 \\right] :\\ \\left| f({ x }_{ 1\\ })-f\\ ({ x }_{ 2 }) \\right| =\\left| \\left| { x }_{ 1\\ } \\right| -\\left| { x }_{ 2\\ } \\right| \\right| \\ \\le \\left| { x }_{ 1 }-{ x }_{ 2 } \\right|" (1).
Since for any "\u03b5>0" and "\u03b4=\u03b5" for any "{ x }_{ 1 },{ x }_{ 2 }\\in \\left[ -1,1 \\right]" such that "\\left| { x }_{ 1 }-{ x }_{ 2 } \\right| <\\delta \\quad"from (1) it follows "\\left| f({ x }_{ 1\\ })-f\\ ({ x }_{ 2 }) \\right| =\\left| \\left| { x }_{ 1\\ } \\right| -\\left| { x }_{ 2\\ } \\right| \\right| < \u03b5" , then "f" is uniformly continuous.
"f" is differentiable on "[-1,0)" and "(0,1]" , because
"f(x)=\\begin{cases} -x,-1\\le x<0 \\\\ 0,\\quad x=0 \\\\ x,\\quad 0<x\\le 1 \\end{cases}, f'(x)=\\begin{cases} -1,-1\\le x<0 \\\\ 1\\ ,\\quad 0<x\\le 1 \\end{cases}" .
Since "{ f }_{ - }^{ ' }(0)=\\lim _{ x\\rightarrow { 0 }^{ - } }{ \\frac { f(x)-f(0) }{ x } } =\\lim _{ x\\rightarrow { 0 }^{ - } }{ \\frac { -x-0 }{ x } =-1,\\quad { f }_{ + }^{ ' }(0)= } \\lim _{ x\\rightarrow { 0 }^{ + } }{ \\frac { f(x)-f(0) }{ x } } =\\lim _{ x\\rightarrow { 0 }^{ + } }{ \\frac { \\ x-0 }{ x } =\\ 1 }"
then the left derivative is not equal right derivative. So , the function is not differentiable at the point "x=0."
Comments
Leave a comment