Show that |2π-2πx2sin8 (π π₯ ) ππ₯| β€ 16π 3/ 3 .
The function "f(x)=x^2\\sin^8(e^x)" is continuous on "[-2\\pi, 2\\pi]." Then
"0\\leq|sin^8(e^x)|\\leq1=>|x^2\\sin^8(e^x)|\\leq x^2, x\\in\\R"
Then
"\\displaystyle\\int_{-2\\pi}^{2\\pi}x^2dx=[\\dfrac{x^3}{3}]\\begin{matrix}\n 2\\pi \\\\\n -2\\pi\n\\end{matrix}=\\dfrac{16\\pi^3}{3}"
Therefore
"\\leq\\displaystyle\\int_{-2\\pi}^{2\\pi}x^2dx=\\dfrac{16\\pi^3}{3}"
Therefore
Comments
Leave a comment