Calculate the following integrals by using the integration
methods.
1
a) β« (4π₯^34 + 8π₯^3 + 15π₯)ππ₯ / (βπ₯^2 + 4x)
0
b) β« ππ₯ / sin π₯ β cos^2 π₯
(a)
"4\ud835\udc65^4 + 8\ud835\udc65^3 + 15\ud835\udc65=4x^3(x+2)+15x"
"=4u(u-2)^3+15(u-2)"
"=4u^4-24u^3+48u^2-32u+15u-30"
"+48u^2-32u+15u-30"
"=4u^2(u^2-4)-24u(u^2-4)+64(u^2-4)"
"-113u+226"
Table of Integrals
"-\\dfrac{a^4}{8}\\ln|u+\\sqrt{u^2-a^2}|+C"
"-\\dfrac{a^4}{8}\\ln|u+\\sqrt{u^2-a^2}|+C"
"-\\dfrac{a^2}{2}\\ln|u+\\sqrt{u^2-a^2}|+C"
"\\int\\dfrac{u}{\\sqrt{u^2-a^2}}du=\\sqrt{u^2-a^2}+C"
"\\int\\dfrac{4u^4-24u^3+48u^2-17u-30}{\\sqrt{u^2-4}}du"
"+\\int64\\sqrt{u^2-4}du-\\int\\dfrac{113u}{\\sqrt{u^2-4}}du+\\int\\dfrac{226}{\\sqrt{u^2-4}}du"
"=u(u^2-2)\\sqrt{u^2-4}-8\\ln|u+\\sqrt{u^2-4}|-"
"-8(u^2-4)\\sqrt{u^2-4}"
"+32u\\sqrt{u^2-4}-128\\ln|u+\\sqrt{u^2-4}|"
"-113\\sqrt{u^2-4}+226\\ln|u+\\sqrt{u^2-4}|+C"
"=\\sqrt{u^2-4}(u^3-2u-8u^2+32+32u-113)"
"+90\\ln|u+\\sqrt{u^2-4}|+C"
"=\\sqrt{x^2+4x}((x+2)^3-8(x+2)^2+30(x+2)-81)"
"+90\\ln|x+2+\\sqrt{x^2+4x}|+C"
"\\displaystyle\\int_{0}^{1}\\dfrac{4\ud835\udc65^4 + 8\ud835\udc65^3 + 15\ud835\udc65}{\n\\sqrt{x^2+4x}}dx"
"=\\sqrt{5}(27-72+90-81)+90\\ln(3+\\sqrt{5})"
"-90\\ln(2)=90\\ln(\\dfrac{3+\\sqrt{5}}{2})-36"
(b)
"\\int\\dfrac{dx}{\\sin x}=\\int\\dfrac{\\sin x dx}{\\sin^2 x}=\\int\\dfrac{\\sin xdx}{1-\\cos^2 x}"
"=\\dfrac{1}{2}\\int\\dfrac{\\sin xdx}{1-\\cos x}-\\dfrac{1}{2}\\int\\dfrac{\\sin xdx}{1+\\cos x}"
"=\\dfrac{1}{2}\\ln(1-\\cos x)-\\dfrac{1}{2}\\ln(1+\\cos x)+C_1"
Therefore
"+\\dfrac{1}{\\cos x}+C"
Comments
Leave a comment