Check whether the function f given by:
f (x) = (x − 4)3 (x +1)2
has local maxima and local minima.
f= (x − 4)3 (x +1)2
f'=2(x − 4)3 (x +1)+3(x − 4)2 (x +1)2
f''=2(x − 4)3 +6(x − 4)2 (x +1)+6(x − 4)2 (x +1)+6(x − 4)(x +1)2
Now, the critical points are,
f'=0
2(x − 4)3 (x +1)+3(x − 4)2 (x +1)2=0
(x − 4)2(x +1) [2(x-4)+3(x +1)]=0
(x − 4)2(x +1) (5x -5)=0
x=4,4,-1,1
Then,
f''(4)=0
f''(-1)=-250<0 (increasing)
f''(1)=90>0 (decreasing)
Thus, local maxima at x=1 and local minima at x=-1.
Comments
Leave a comment