Determine the local minimum and local maximum value of the function f defined by f(x)=3-5x^3+5x^4-x^5
Solution:
"f(x)=3-5x^3+5x^4-x^5"
"\\Rightarrow f'(x)=-15x^2+20x^3-5x^4"
Put "f'(x)=0"
"\\Rightarrow -15x^2+20x^3-5x^4=0\n\\\\\\Rightarrow -5x^2(3-4x+x^2)=0"
"\\\\\\Rightarrow -5x^2=0,(3-4x+x^2)=0"
"\\\\\\Rightarrow x=0,(3-3x-x+x^2)=0\n\\\\\\Rightarrow(3-x)(1-x)=0\n\\\\\\Rightarrow x=1,x=3,x=0"
"\\mathrm{If\\:}f\\:'\\left(x\\right)>0\\mathrm{\\:to\\:the\\:left\\:of\\:}x=c\\mathrm{\\:and\\:}f\\:'\\left(x\\right)<0\\mathrm{\\:to\\:the\\:right\\:of\\:}x=c\\mathrm{\\:then\\:}x=c\\mathrm{\\:is\\:a\\:local\\:maximum.}"
We have, "f'(x)>0" when "1<x<3" and "f'(x)<0" when "x<0, 0<x<1,x>3", so "x=3" is a point of local maximum and "x=1" is a point of local minimum.
So, put "x=3" in "f(x)".
"f(3)=3-5(3)^3+5(3)^4-(3)^5=30"
And put "x=1" in "f(x)".
"f(1)=3-5(1)^3+5(1)^4-(1)^5=2"
Hence, local maximum is 30 at x=3 and minimum is 2 at x=1.
Comments
Leave a comment