Give an example of an series Σan such that Σan is not convergent but the sequence (an) converges to 0
Solution:
Assume "a_n=\\dfrac{\\ln (n)}{n}"
"\\lim _{n \\rightarrow \\infty} \\frac{\\ln n}{n}"
"\\\\=\\lim _{n \\rightarrow \\infty} \\frac{1 \/ n}{1}" [Using L' Hopital rule]
"=0"
Next, "\\Sigma a_n= \\sum _{n=1}^{\\infty \\:}\\frac{\\ln \\left(n\\right)}{n}"
Consider "\\int_{1}^{\\infty} a_{n} d n=\\int_{1}^{\\infty} \\frac{\\ln n}{n} d n=\\left[\\frac{(\\ln n)^{2}}{2}\\right]_{1}^{\\infty}= diverges"
So, by integral series test, "\\int_{1}^{\\infty} a_{n} d n" is divergent, then so is "\\sum_{n=1}^{\\infty} a_{n}"
Thus, we have "\\sum_{n=1}^{\\infty} \\frac{\\ln n}{n}" is divergent.
Comments
Leave a comment