(i)
n! ≥ 2(n-1)
For P(2) = "2! \t\\geq 2(2-1)"
2=2
for P(3)= "3! \t\\geq 2(3-1)"
6>4
now for
P(k)
The inductive hypothesis is
"\\boxed{k! \t\\geq 2(k-1)}"
(ii)
by using
n! ≥ 2(n-1)
and using definition of a Cauchy sequence
"|a_{n+p}-a_{n}|= \\frac{1}{(n+1)!}+\\frac{1}{(n+2)!}+..........+\\frac{1}{(n+p)!}"
"\\leq \\frac{1}{n(n+1)}+\\frac{1}{(n+1)(n+2)}+...........+\\frac{1}{(n+p-1)(n+2)}"
"=\\frac{1}{n}-\\frac{1}{n+p}"
"\\leq\\frac{1}{n}"
hence proved
"\\boxed{S_n = ( 1+\\frac{1}{2!}+\\frac{1}{3!}..................+\\frac{1}{n!} \n}"
Comments
Leave a comment