(i)
n! ≥ 2(n-1)
For P(2) = 2!≥2(2−1)
2=2
for P(3)= 3!≥2(3−1)
6>4
now for
P(k)
The inductive hypothesis is
k!≥2(k−1)
(ii)
by using
n! ≥ 2(n-1)
and using definition of a Cauchy sequence
∣an+p−an∣=(n+1)!1+(n+2)!1+..........+(n+p)!1
≤n(n+1)1+(n+1)(n+2)1+...........+(n+p−1)(n+2)1
=n1−n+p1
≤n1
hence proved
Sn=(1+2!1+3!1..................+n!1
Comments
Leave a comment