Prove from first principles (i.e.an ε − δ proof) that f is continuous at the point x = −3.
Let "f(x)=4x^2-3x+2"
Suppose we wish to show this is continuous using the "\\epsilon \u2212 \u03b4" definition. Then we need
to control the error "|f(x) \u2212 f(x_0)| \\text{ in terms of } |x \u2212 x_0|" . We have
"|f(x) \u2212 f(x_0)| =|(4x2 \u2212 3x + 2) \u2212 (4x^2_0 \u2212 3x_0 + 2)|"
"=|4x^2 \u2212 4x^2_0 \u2212 3x + 3x_0 + 2 \u2212 2|\n\n = |4(x \u2212 x0)(x + x0) \u2212 3(x \u2212 x0)|\\\\\n\n = |(x \u2212 x_0) (4(x + x_0) \u2212 3)|\\\\ \n\n = |x \u2212 x_0| |4(x + x_0) \u2212 3|\\\\\u2264 |x \u2212 x_0|(4|x + x_0| + 3)\\\\"
Thus we have bounded the error"|f(x) \u2212 f(x_0)| \\text{ in terms of } |x \u2212 x_0|" . We now need to
show that given any "\\epsilon> 0" , we can choose δ > 0 small enough so that if "|x \u2212 x_0| < \u03b4,"
then "|f(x) \u2212 f(x_0)| < \\epsilon." Indeed, suppose "|x \u2212 x_0| < 1" . Then we have
"|f(x) \u2212 f(x_0)| \u2264 |x \u2212 x_0|(4|x \u2212 x_0| + 8|x_0| + 3) \u2264 |x \u2212 x_0|(8|x_0| + 7)"
If we further have "|x \u2212 x_0| <\\epsilon 8|x_0|+7" , then
"|f(x) \u2212 f(x_0)| \u2264 |x \u2212 x_0|(8|x_0| + 7)"
"\\text{at }x_0=3, |f(x) \u2212 f(-3)| \u2264 |x +3|(8|-3| + 7)\\\\\n\n |f(x) \u2212 f(-3)| \u2264 |x +3|(31)"
Hence The function f is continuous.
Comments
Dear Zander, please use the panel for submitting a new question.
by using an (ε − N ) argument that lim 3n2 −2n+1 n→∞/ 2n2 − 4 =3/2 ii) Use an (ε − δ) argument to show that f : R → R be the function defined by F(x) (x^2−5x−5 if x≥−1 (x^2+x+1 if x
Leave a comment