If 𝜙(x, y) = 0, show that the determinant
|
fxx + λϕxx
fxy + λϕxy
ϕx
fxy + λϕxy
fyy + λϕyy
ϕy
ϕx
ϕy
|
where 𝜆 is Lagrange’s multiplier, is positive, in case the function attains a maximum.
"\\begin{vmatrix}\n f_{xx}+\\lambda \\phi_{xx} & f_{xy}+\\lambda \\phi_{xy} & \\phi_x \\\\\n f_{xy}+\\lambda \\phi_{xy} & f_{yy}+\\lambda \\phi_{yy} & \\phi_y \\\\\n \\phi_x & \\phi_y & 0\n\\end{vmatrix}"
"\\det \\begin{pmatrix} f_{xx}+\\lambda \\phi_{xx} & f_{xy}+\\lambda \\phi_{xy} & \\phi_x\\\\ f_{xy}+\\lambda \\phi_{xy}& f_{yy}+\\lambda \\phi_{yy} & \\phi_y \\\\ \\phi_x&h&i\\end{pmatrix}=f_{xx}+\\lambda \\phi_{xx} \\cdot \\det \\begin{pmatrix} f_{yy}+\\lambda \\phi_{yy} &\\phi_y\\\\ \\phi_y&0\\end{pmatrix}-f_{xy}+\\lambda \\phi_{xy}\\cdot \\det \\begin{pmatrix}f_{xy}+\\lambda&\\phi_y\\\\ \\phi_x &0\\end{pmatrix}+\\phi_x\\cdot \\det \\begin{pmatrix}f_{xy}+\\lambda& f_{yy}+\\lambda \\phi_{yy}\\\\ \\phi_x&\\phi_y\\end{pmatrix}"
"[f_{xx}+\\lambda \\phi_{xx} \\cdot (-\\phi_y ^2)]-[f_{xy}+\\lambda \\phi_{xy}\\cdot (-\\phi_x\\phi_y) ]+[\\phi_x\\cdot (\\phi_{y})(f_{xy}+\\lambda_{xy})-(\\phi_{y})(f_{yy}+\\lambda_{yy})]"
Comments
Leave a comment