a.
Let ϵ>0 be given.∣∣6n2+23n2+1−21∣∣=∣∣2(3n2+1)3n2+1−21∣∣=0Take δ=ϵ.So,when∣∣n−0∣∣<ϵ=δ⟹,∣∣6n2+23n2+1−21∣∣<ϵ⟹limn→06n2+23n2+1=21
b.
Let ϵ>0 be given.∣∣n+1−n−0∣∣Rationalise the denominator=∣∣n+1+n1∣∣=n+1+n1<n+n1=2n1<n1<ϵIf n>ϵ1n>ϵ21If m is a positive integer>ϵ21, then∣∣n+1−n−0∣∣<ϵ∀n≥m⟹limn→0n+1−n=0
Comments
Leave a comment