lim n tend to infinity [1/√2n-1 + 1/√4n-22 +1/√6n-32+ .......+ 1/n] = π/2
The question asks to prove if "Lim_{n \\to \\infin}[\\frac{1}{\\sqrt{2n-1^2}}+\\frac{1}{\\sqrt{4n-2^2}}+\\frac{1}{\\sqrt{6n-3^2}}+...+\\frac{1}{n}]=\\frac{\\pi}{2}"
"Lim_{n \\to \\infin} \\sum _{n=1} ^n\\frac{1}{\\sqrt{2n-r^2}}"
"Lim_{n \\to \\infin} \\sum _{n=1} ^n\\frac{1}{n\\sqrt{\\frac{2r}{n}- (\\frac{r}{n})^2}}"
"\\frac{r}{n}=x"
"\\int_0^1 \\frac{1}{\\sqrt{2x-x^2}}dx=\\int_0^1 \\frac{1}{\\sqrt{1-(x-1)^2}}dx"
Let x-1 =t, dx=dt
"\\int_{-1}^0 \\frac{dt}{\\sqrt{1-t^2}}=[sin^{-1} t]_{-1}^0=0-[- \\frac{\\pi}{2}]= \\frac{\\pi}{2}"
Comments
Leave a comment