lim n tend to infinity [1/√2n-1 + 1/√4n-22 +1/√6n-32+ .......+ 1/n] = π/2
The question asks to prove if Limn→∞[12n−12+14n−22+16n−32+...+1n]=π2Lim_{n \to \infin}[\frac{1}{\sqrt{2n-1^2}}+\frac{1}{\sqrt{4n-2^2}}+\frac{1}{\sqrt{6n-3^2}}+...+\frac{1}{n}]=\frac{\pi}{2}Limn→∞[2n−121+4n−221+6n−321+...+n1]=2π
Limn→∞∑n=1n12n−r2Lim_{n \to \infin} \sum _{n=1} ^n\frac{1}{\sqrt{2n-r^2}}Limn→∞∑n=1n2n−r21
Limn→∞∑n=1n1n2rn−(rn)2Lim_{n \to \infin} \sum _{n=1} ^n\frac{1}{n\sqrt{\frac{2r}{n}- (\frac{r}{n})^2}}Limn→∞∑n=1nnn2r−(nr)21
rn=x\frac{r}{n}=xnr=x
∫0112x−x2dx=∫0111−(x−1)2dx\int_0^1 \frac{1}{\sqrt{2x-x^2}}dx=\int_0^1 \frac{1}{\sqrt{1-(x-1)^2}}dx∫012x−x21dx=∫011−(x−1)21dx
Let x-1 =t, dx=dt
∫−10dt1−t2=[sin−1t]−10=0−[−π2]=π2\int_{-1}^0 \frac{dt}{\sqrt{1-t^2}}=[sin^{-1} t]_{-1}^0=0-[- \frac{\pi}{2}]= \frac{\pi}{2}∫−101−t2dt=[sin−1t]−10=0−[−2π]=2π
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments