1. Solve the following Bernoulli's Differential Equations. Show your solutions.
a. dy/dx + (1/3) y = e^x y²
b. x (dy/dx) + y = xy³
c. dy/dx + (2/x) y = -x² cos x y²
d. x²y-x³ (dy/dx) = y² cos x
a.
"\\frac{y'}{y^2}+\\frac{1}{3y}=e^x"
"z=1\/y,z'=-y'\/y^2"
"-z'+z\/3=e^x"
"z=uv,z'=u'v+uv'"
"-(u'v+uv')+uv\/3=e^x"
"-u'v+u(v\/3-v')=e^x"
"v\/3-v'=0"
"-u'v=e^x"
"dv\/v=dx\/3"
"lnv=x\/3"
"v=e^{x\/3}"
"-u'e^{x\/3}=e^x"
"u'=-e^{2x\/3}"
"u=-3e^{2x\/3}\/2+c"
"z=e^{x\/3}(-3e^{2x\/3}\/2+c)"
"y=\\frac{1}{e^{x\/3}(-3e^{2x\/3}\/2+c)}"
b.
"\\frac{xy'}{y^3}+\\frac{1}{y^2}=x"
"z=1\/y^2,z'=-2y'\/y^3"
"-xz'\/2+z=x"
"z=uv,z'=u'v+uv'"
"-x(u'v+uv')+2uv=2x"
"-xvu'+u(2v-xv')=2x"
"-vu'=2"
"2v-xv'=0"
"dv\/v=2dx\/x"
"lnv=2lnx"
"v=x^2"
"-x^2u'=2"
"du=-2dx\/x^2"
"u=2\/x+c"
"z=x^2(2\/x+c)"
"y=\\frac{1}{x\\sqrt{2\/x+c}}"
c.
"y'\/y^2+2\/(xy)=-x^2cosx"
"z=1\/y,z'=-y'\/y^2"
"-z'+2z\/x=-x^2cosx"
"z=uv,z'=u'v+uv'"
"-(u'v+uv')+2uv\/x=-x^2cosx"
"-u'v=-x^2cosx"
"2v\/x-v'=0"
"dv\/v=2dx\/x"
"v=x^2"
"u'=cosx"
"u=sinx+c"
"z=x^2(sinx+c)"
"y=\\frac{1}{x^2(sinx+c)}"
d.
"x^2\/y-x^3y'\/y^2=cosx"
"z=1\/y,z'=-y'\/y^2"
"zx^2+x^3z'=cosx"
"z=uv,z'=u'v+uv'"
"uvx^2+x^3(u'v+uv')=cosx"
"x^3u'v=cosx"
"vx^2+x^3v'=0"
"dv\/v=-dx\/x"
"lnv=-lnx"
"v=1\/x"
"x^2u'=cosx"
"u=\\int cosxdx\/x^2=-\\frac{i(\\Gamma(-1,ix))-\\Gamma(-1,-ix)}{2}+c"
"z=\\frac{1}{x}(-\\frac{i(\\Gamma(-1,ix))-\\Gamma(-1,-ix)}{2}+c)"
"y=\\frac{x}{-\\frac{i(\\Gamma(-1,ix))-\\Gamma(-1,-ix)}{2}+c}"
where "\\Gamma(z)" is gamma function:
"\\Gamma(z)=\\int^{\\infin}_0 x^{z-1}e^{-x}dx"
Comments
Leave a comment