Use the method of variation of parameters to solve the differential equation:
y"-2y'+y=xe^xtan-1x
characteristic equation:
"k^2-2k+1=0"
"k_{1,2}=1"
complementary solution:
"y_c=c_1e^x+c_2xe^x"
particular solution:
"y_p=-y_1\\int\\frac{y_2g(x)}{W}dx+y_2\\int\\frac{y_1g(x)}{W}dx"
where "y_1=e^x,y_2=xe^x"
"W=y_1y'_2-y'_1y_2=e^x(e^x+xe^x)-xe^{2x}=e^{2x}"
"g(x)=xe^xtan^{-1}x"
"\\int\\frac{y_2g(x)}{W}dx=\\int\\frac{x^2e^{2x}tan^{-1}x}{e^{2x}}dx=\\frac{ln(x^2+1)+2x^3tan^{-1}x-x^2}{6}"
"\\int\\frac{y_1g(x)}{W}dx=\\int\\frac{xe^{2x}tan^{-1}x}{e^{2x}}dx=\\frac{(x^2+1)tan^{-1}x-x}{2}"
"y=y_c+y_p=c_1e^x+c_2xe^x-e^x\\frac{ln(x^2+1)+2x^3tan^{-1}x-x^2}{6}+xe^x\\frac{(x^2+1)tan^{-1}x-x}{2}"
Comments
Leave a comment