Solve the following differential equation by using the method of undetermined
coefficients:
π¦"+4π¦=3π₯+πππ (2π₯)
characteristic equation:
"k^2+4=0"
"k=\\pm2i"
"y_h=c_1cos2x+c_2sin2x"
particular solution:
"y_{p1}=Ax+B"
"A=3\/4,B=0"
"y_{p2}=Axcos2x+Bxsin2x"
"y'_{p2}=Acos2x+Bsin2x+x(-2Asin2x+2Bcos2x)"
"y''_{p2}=-2Asin2x+2Bcos2x-2Asin2x+2Bcos2x+x(-4Acos2x-4Bsin2x)"
"-2Asin2x+2Bcos2x-2Asin2x+2Bcos2x+x(-4Acos2x-4Bsin2x)+"
"+4(Axcos2x+Bxsin2x)=cos2x"
"-4A=0\\implies A=0"
"4B=1\\implies B=1\/4"
"y=c_1cos2x+c_2sin2x+3x\/4+xsin2x\/4"
Comments
Leave a comment