Find a power series solution of 𝑥𝑦′=𝑦
By Power Series Method, the solution of the differential equation is
"y=c_{0} \\sum_{n=0}^{\\infty} \\frac{\\left(\\frac{x^{2}}{2}\\right)^{n}}{n !}=c_{0} e^{\\frac{x^{2}}{2}}," where "c_{0}" is any constant.
Let us look at some details.
"\\text { Let } y=\\sum_{n=0}^{\\infty} c_{n} x^{n}"
By taking the derivative term by term,
"y^{\\prime}=\\sum_{n=1}^{\\infty} n c_{n} x^{n-1}"
Now, let us look at the differential equation.
"y^{\\prime}=x y"
by substituting the above power series in the equation,
"\\Rightarrow \\sum_{n=1}^{\\infty} n c_{n} x^{n-1}=x \\cdot \\sum_{n=0}^{\\infty} c_{n} x^{n}"
by pulling the first term from the summation on the left,
"\\Rightarrow c_{1}+\\sum_{n=2}^{\\infty} n c_{n} x^{n-1}=\\sum_{n=0}^{\\infty} c_{n} x^{n+1}"
by shifting the indices of the summation on the left by 2 ,
"\\Rightarrow c_{1}+\\sum_{n=0}^{\\infty}(n+2) c_{n+2} x^{n+1}=\\sum_{n=0}^{\\infty} c_{n} x^{n+1}"
By matching coefficients,
"c_{1}=0" and "(n+2) c_{n+2}=c_{n} \\Rightarrow c_{n+2}=\\frac{c_{n}}{n+2}"
Let us observe the odd terms.
"\\begin{aligned}\n\n&c_{3}=\\frac{c_{1}}{3}=\\frac{0}{3}=0 \\\\\n\n&c_{5}=\\frac{c_{3}}{5}=\\frac{0}{5}=0\\\\\n\n&.\\\\\n\n&.\\\\\n\n&.\\\\\n\n&c_{2 n+1}=0\n\n\\end{aligned}"
Let us observe the even terms.
"\\begin{aligned}\n\n&c_{2}=\\frac{c_{0}}{2} \\\\\n\n&c_{4}=\\frac{c_{2}}{4}=\\frac{c_{0}}{4 \\cdot 2}=\\frac{c_{0}}{2^{2} \\cdot 2 !} \\\\\n\n&c_{6}=\\frac{c_{4}}{6}=\\frac{c_{0}}{6 \\cdot 4 \\cdot 2}=\\frac{c_{0}}{2^{3} \\cdot 3 !}\n\n&c_{2 n}=\\frac{c_{0}}{2^{n} \\cdot n !}\n\n\\end{aligned}"
Hence,
"y=\\sum_{n=0}^{\\infty} \\frac{c_{0}}{2^{n} \\cdot n !} x^{2 n}=c_{0} \\sum_{n=0}^{\\infty} \\frac{\\frac{x^{2 n}}{2^{n}}}{n !}=c_{0} \\sum_{n=0}^{\\infty} \\frac{\\left(\\frac{x^{2}}{2}\\right)^{n}}{n !}=c_{0} e^{\\frac{x^{2}}{2}}"
"\\text { (by replacing } x \\text { by } \\frac{x^{2}}{2} \\text { in } e^{x}=\\sum_{n=0}^{\\infty} \\frac{x^{n}}{n !} \\text { ) }"
Comments
Leave a comment