The particular integral of (D³ - 2D²D')z = sin (x + 2y) is
"Given\\mathrm{:}\\ \\ \\left(D^{\\mathrm{3}}-\\mathrm{2}D^{\\mathrm{2}}D'\\right)z\\ \\ \\ =\\ \\mathrm{sin}\\left(x+\\mathrm{2}y\\right) \\\\ \nLet\\ \\ \\ P.I.\\ \\ =\\frac{\\mathrm{1}}{\\left(D^{\\mathrm{3}}-\\mathrm{2}D^{\\mathrm{2}}D'\\right)}\\ \\mathrm{sin}\\left(x+\\mathrm{2}y\\right) \\\\ \n \\\\ \nP.I.\\ \\ =\\frac{\\mathrm{1}}{\\left(D^{\\mathrm{2}}D-\\mathrm{2}D^{\\mathrm{2}}D'\\right)}\\ \\mathrm{sin}\\left(x+\\mathrm{2}y\\right) \\\\ \n \\\\ \nPut\\ \\ D^{\\mathrm{2}}=-\\mathrm{1} \\\\ \n \\\\ \nP.I.\\ \\ =\\frac{\\mathrm{1}}{D\\left(\\left(-\\mathrm{1}\\right)-\\mathrm{2}DD'\\right)}\\ \\mathrm{sin}\\left(x+\\mathrm{2}y\\right) \\\\ \n \\\\ \nPut\\ \\ DD\\mathrm{'}\\ \\ =\\ -\\mathrm{2} \\\\ \n \\\\ \nP.I.\\ \\ =\\frac{\\mathrm{1}}{D\\left(-\\mathrm{1}+\\mathrm{4}\\right)}\\ \\mathrm{sin}\\left(x+\\mathrm{2}y\\right) \\\\ \n \\\\ \n \\\\ \nP.I.\\ \\ =\\frac{\\mathrm{1}}{\\mathrm{3}D}\\ \\mathrm{sin}\\left(x+\\mathrm{2}y\\right) \\\\ \n \\\\ \nP.I.\\ \\ =-\\frac{\\ \\mathrm{cos}\\left(x+\\mathrm{2}y\\right)}{\\mathrm{3}}"
Comments
Leave a comment