Answer to Question #280614 in Differential Equations for Feline

Question #280614

Given an RC series circuit that has an emf source of 110 volts, a resistance of 3 kilo-ohms, a capacitance of 5 microfarad and the initial charge of the capacitor is 50 micro coulomb. What is the charge in the capacitor at the end of 0.01 second?




1
Expert's answer
2021-12-22T16:06:34-0500

Differential equation of a LR circuit 


"Rq'+\\dfrac{q}{C}=U"

Given "U=110V, R=3000\\ Ohm, C=5\\times10^{-6}\\ F"

Substitute


"3000q'+200000q=110""q'+\\dfrac{200}{3}q=0.11"

Integrating factor


"\\mu(t)=e^{\\int(200\/3)dt}=e^{(200\/3)t}"

"e^{(200\/3)t}(q'+\\dfrac{200}{3}q)=0.11e^{(200\/3)t}"

"d(e^{(200\/3)t}q)=0.11e^{(200\/3)t}dt"

Integrate


"\\int d(e^{(200\/3)t}q) =\\int 0.11e^{(200\/3)t}dt"

"e^{(200\/3)t}q=0.00165e^{(200\/3)t}+C"

"q(t)=1.65\\times 10^{-3}+Ce^{-(200\/3)t}"

"q(0)=50\\times 10^{-6} A"

"0.05\\times 10^{-3} =1.65\\times 10^{-3}+C"

"C=-1.60\\times 10^{-3}"

"q(t)=1.65\\times 10^{-3}-1.60\\times 10^{-3}e^{-(200\/3)t}"

"q(0.01)=1.65\\times 10^{-3}-1.60\\times 10^{-3}e^{-(200\/3)(0.01)}"

"q(0.01)=0.8285\\ mC"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS