Given an RC series circuit that has an emf source of 110 volts, a resistance of 3 kilo-ohms, a capacitance of 5 microfarad and the initial charge of the capacitor is 50 micro coulomb. What is the charge in the capacitor at the end of 0.01 second?
Differential equation of a LR circuit
Given "U=110V, R=3000\\ Ohm, C=5\\times10^{-6}\\ F"
Substitute
Integrating factor
"e^{(200\/3)t}(q'+\\dfrac{200}{3}q)=0.11e^{(200\/3)t}"
"d(e^{(200\/3)t}q)=0.11e^{(200\/3)t}dt"
Integrate
"e^{(200\/3)t}q=0.00165e^{(200\/3)t}+C"
"q(t)=1.65\\times 10^{-3}+Ce^{-(200\/3)t}"
"q(0)=50\\times 10^{-6} A"
"0.05\\times 10^{-3} =1.65\\times 10^{-3}+C""C=-1.60\\times 10^{-3}"
"q(t)=1.65\\times 10^{-3}-1.60\\times 10^{-3}e^{-(200\/3)t}"
"q(0.01)=1.65\\times 10^{-3}-1.60\\times 10^{-3}e^{-(200\/3)(0.01)}"
"q(0.01)=0.8285\\ mC"
Comments
Leave a comment