A radioactive substance plutonium-239 has a half-life of 24,000 years. Initially, there is 700 mg of the substance. How long for the substance to decay 78% of its initial mass?
"y=y_0e^{-kt}" ...(i)
Here, y is the amount of element at time t, "y_o" is the initial amount, k is decay constant.
Given, "y_0=700\\ gm".
When "t=24000,y=\\dfrac12 y_0"
Putting all these values in (i).
"\\\\ y=y_0e^{-kt}\n\\\\ \\Rightarrow\\dfrac12 y_0=y_0e^{-k(24000)}\n\\\\ \\Rightarrow \\dfrac12=e^{-24000k}\n\\\\ \\Rightarrow \\ln\\dfrac12=-24000k\n\\\\ \\Rightarrow k\\approx0.00002888113"
So, "y=700e^{-0.00002888113t}"
Now, "y=0.78(700),t=?"
"0.78(700)=700e^{-0.00002888113t}\n\\\\ \\Rightarrow0.78=e^{-0.00002888113t}\n\\\\ \\Rightarrow\\ln0.78=-0.00002888113t\n\\\\ \\Rightarrow t\\approx8603"
Comments
Leave a comment