With the use of reduction of order for differential equations, reduce the following to first order and solve. (i) π¦ β²β² + π π¦π¦ β²3 = 0, (ii) π₯π¦ β²β² + 2π¦ β² + π₯π¦ = 0, π¦1 = sin π₯ π₯ , (iii) (1 β π₯ 2 )π¦ β²β² β 2π₯π¦ β² + 2π¦ = 0, π¦1 = π₯, (iv) 4π₯ 2π¦ β²β² β 3π¦ = 0, π¦(1) = 3, π¦ β² (1) = 2.5.Β
i)
"\ud835\udc66'' + \ud835\udc52^\ud835\udc66(\ud835\udc66')^3 = 0"
"y'=u"
"y''=uu'"
"uu'+e^yu^3=0"
"u'+e^yu^2=0"
"du\/u^2=-e^ydy"
"1\/u=e^y+c"
"\\frac{}{}" "dx=(e^y+c)dy"
"x=e^y+cy+c_1"
ii)
"y''+p(x)y'+q(x)y=0"
"y''+2y'\/x+y=0"
"y_2=v(x)y_1=vsinx\/x"
"v(x)=c\\int\\frac{1}{y_1^2}e^{-\\int p(x)dx}dx=c\\int\\frac{x^2}{sin^2x}e^{-2lnx}dx="
"=c\\int\\frac{1}{sin^2x}dx=c(-cotx)+k"
"v(x)=cotx"
"y_2=cotxsinx\/x=cosx\/x"
"y(x)=c_1sinx\/x+c_2cosx\/x"
iii)
"\ud835\udc66 ''\u2212 2\ud835\udc65\ud835\udc66 '\/(1 \u2212 \ud835\udc65 ^2 )+ 2\ud835\udc66\/(1 \u2212 \ud835\udc65^ 2 ) = 0"
"v(x)=c\\int\\frac{1}{y_1^2}e^{-\\int p(x)dx}dx=c\\int\\frac{1}{x^2}e^{-ln(x^2-1)}dx=c\\int\\frac{1}{x^2(x^2-1)}dx="
"=c(\\frac{ln\\frac{x-1}{x+1}}{2}+\\frac{1}{x})+k"
"v(x)=\\frac{ln\\frac{x-1}{x+1}}{2}+\\frac{1}{x}"
"y_2=x(\\frac{ln\\frac{x-1}{x+1}}{2}+\\frac{1}{x})=\\frac{xln\\frac{x-1}{x+1}}{2}+1"
"y(x)=c_1x+c_2(\\frac{xln\\frac{x-1}{x+1}}{2}+1)"
iv)
"y=x^k"
"(x^k)''=k(k-1)x^{k-2}"
"(4k^2-4k-3)x^k=0"
"4k^2-4k-3=0"
"k_1=-1\/2,k_2=3\/2"
"y_1=c_1\/\\sqrt x,y_2=c_2x^{3\/2}"
"y(x)=y_1+y_2=c_1\/\\sqrt x+c_2x^{3\/2}"
"y(1)=c_1+c_2=3"
"y'(x)=-c_1\/(2x\\sqrt x)+3c_2x^{1\/2}\/2"
"\ud835\udc66 '(1) =-c_1\/2+3c_2\/2= 2.5"
"c_2-3+3c_2=5"
"c_2=2,c_1=3-c_2=1"
"y(x)=1\/\\sqrt x+2x^{3\/2}"
Comments
Leave a comment